Lecture 38: Register Allocation

[Adapted from notes by R. Bodik and G. Necula]

Topics:

- Memory Hierarchy Management
- Register Allocation:
- Register interference graph
- Graph coloring heuristics
- Spilling
- Cache Management

The Memory Hierarchy

Computers employ a variety of memory devices, trading off capacity, persistence, and speed (some years ago):

Device	Access time (latency) Capacity	
Registers	1 cycle	$256-2000$ bytes
Cache	$2-5$ cycles	$256 \mathrm{~KB}-16 \mathrm{MB}$
Main memory	100 cycles	$32 \mathrm{MB}->16 G B$
Disk	$20 \mathrm{~K}-10 \mathrm{M}$ cycles	$10 G B->1 \mathrm{~TB}$

Managing the Memory Hierarchy

- Programs are written as if there are only two kinds of memory: main memory and disk (variables and files).
- Programmer is responsible for moving data from disk to memory.
- Hardware is responsible for moving data between memory and caches
- Compiler is responsible for moving data between memory and registers (which the programmer usually doesn't see).
- Cache and register sizes are growing slowly: important to manage them well.
- The cost of a cache miss is growing, and the widening gap is bridged with more caches.

The Register Allocation Problem

- Our three-address code style uses temporaries profligately, simplifying code generation and optimization, but complicating final translation to assembly
- Hence, the register allocation problem:

Rewrite the intermediate code to use fewer temporaries than there are machine registers

- So we must assign more temporaries to a register, without changing the program behavior

An Example

Consider the program

$$
\begin{aligned}
& \mathrm{a}:=\mathrm{c}+\mathrm{d} \\
& \mathrm{e}:=\mathrm{a}+\mathrm{b} \\
& \mathrm{f}:=\mathrm{e}-1
\end{aligned}
$$

assuming that assumption that a and e die after use. Then,

- Can reuse a after a + b
- Same with temporary e after e - 1
- Can allocate a, e, and f all to one register (r1):

$$
\begin{aligned}
& r 1:=c+d \\
& r 1:=r 1+b \\
& r 1:=r 1-1
\end{aligned}
$$

Basic Register Allocation Idea

- So in general, since the value in a dead temporary is not needed for the rest of the computation,

Any set of temporaries can share a single physical register if at most one is alive at any program point.

- This rule is easy to apply to basic blocks. General CFGs are considerably trickier.

Going Global: Allocation in CFGs (I)

First step is to compute live variables before each statement. In this example, assume that variable b is live at exit.

Allocation in CFGs (II): Register Interference Graphs

- The sets in the previous slide indicate sets of virtual registers that are simultaneously alive at all points in the program, and therefore cannot share a physical register.
- Can summarize all these sets by constructing an undirected graph with a node for each virtual register, and an edge between any two virtual registers that appear together in the same set somewhere in the program.
- Call this the register interference graph (RIG).

- The RIG extracts exactly the information needed to characterize legal register assignments
- Gives global (over the entire CFG) picture of the register requirements

Allocation in CFGs (III): Graph Coloring

- A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors.
- A graph is k-colorable if it has a coloring with k colors.
- In our problem, colors $=$ registers. That is,

If we have k available machine registers and our register interference graph is k-colorable, then the coloring gives us a register assignment.

Consider the sample RIG:

- There is no coloring with fewer than 4 colors
- There are 4-colorings of this graph

Before	After
A: $\mathrm{a}:=\mathrm{b}+\mathrm{c}$	A: r2 := r3 + r4
$\mathrm{d}:=-\mathrm{a}$	r3 := -r2
e : $=$ d + f	r2 := r3 + r1
if e >= 0 jump C	if r1 >= 0 jump C
$\begin{aligned} & \text { B: f := } 2 * e \\ & \text { jump D } \end{aligned}$	$\begin{aligned} & \mathrm{B}: \mathrm{r} 1:=2 * \mathrm{r} 2 \\ & \text { jump D } \end{aligned}$
$\mathrm{C}: \mathrm{b}:=\mathrm{d}+\mathrm{e}$	C: r3 := r3 + r2
e := e - 1	r2 := r2-1
if e <= 0 jump E	if r2 <= 0 jump E
$\mathrm{D}: \mathrm{b}:=\mathrm{f}+\mathrm{c}$	D: r3 := r1 + r4
if b <= c jump A	if r3 <= r4 jump A

Allocation in CFGs (III): Computing Graph Colorings

- The remaining problem is to compute a coloring for the interference graph.
- Unfortunately, this problem is hard (NP-hard). No guaranteed fast algorithms are known,
- And besides, a coloring might not exist for a given number of registers.
- For (1), we'll use heuristics.

Graph Coloring Heuristic: Motivation

- Observation:
- Pick a node t with $<k$ neighbors in RIG.
- Eliminate t and its edges from RIG.
- If the resulting graph has a k-coloring then so does the original graph.
- Reason: whatever $n \leq k-1$ colors t's neighbors have, we know we'll always be able to color t (since there are k colors). Therefore, eliminating t cannot affect the colorability of the other nodes.

Graph Coloring Heuristic

The following works well in practice:

- Pick a node t with $<k$ neighbors.
- Push t on a stack and remove it from the RIG.
- Repeat until the graph has no nodes.
- Then start popping nodes from the stack and adding them back to the graph, assigning colors to each as we go (starting with the last node added).
- At each step, we know we can pick a color different from those assigned to already colored neighbors, by the observation on the last slide.

Graph Coloring Example (2)

- Now we assign colors ...er, ...registers to: f, e, b, c, d, a in that order.
- At each step, guaranteed there's a free register.

Example of Using the Heuristic (I)

Start with our sample RIG and with $k=4$:

Stack: []

Now remove a and then d, giving

Stack: [d, a] (top on left)

Now all nodes have <4 neighbors; remove. Stack is $[f, e, b, c, d, a]$.

Last modified: Mon Apr 29 14:08:59 2019
CS164: Lecture \#38 14

Spilling

- What if during simplification we get to a state where all nodes have k or more neighbors?
- Example: try to find a 3-coloring of the RIG we've been using. After removing a, we get

- ... and now we are stuck, since all nodes have ≥ 3 neighbors.
- So, pick a node as a candidate for spilling, that is, to reside in memory.

Example of Spilling

- Assume that f is picked as a candidate. When we remove it from the graph:

- Simplification now succeeds. We end up with the stack
$[e, c, b, d, f, a]$

Example of Spilling (III)

- Since optimistic coloring failed we must spill register f : Allocate a memory location call it fa as the home of f (typically in the current stack frame).
- Before each operation that uses f, insert

$$
\mathrm{f}:=* \mathrm{fa}
$$

- After each operation that defines (assigns to) f, insert

```
*fa := f
```

- This gives us:

```
A: a := b + c
    C: b := d + e
d := -a
f := *fa
e := d + f
if e >= 0 jump C
B: f := 2 * e
*fa := f
jump D
```


Example of Spilling (II)

- On the assignment phase we get to the point when we have to assign a color to f
- Sometimes, it just happens that among the 4 neighbors of f we use < 3 colors (optimistic coloring)...

- ... but not this time.

Recomputing Liveness Information

A New RIG

- The new liveness information is almost as before, except that that f is live only
- Between an $\mathrm{f}:=* \mathrm{fa}$ and the next instruction, and
- Between a store f, fa and the preceding instruction.
- That is, spilling reduces the live range of f, and thus the registers it interferes with, giving us this RIG:

- And this graph is 3-colorable (left to the reader).

Caches

- Compilers are very good at managing registers (much better than programmers: the C register declaration is really obsolete).
- Caches are another matter. The problem is still left to programmers, and it is still an open question whether compilers can do much in general to improve performance
- But they can (and a few do) perform some simple cache optimization

What to Spill?

- In general, additional spills might be required to allow a coloring.
- The tricky part is deciding what to spill. Possible heuristics:
- Spill temporaries with most conflicts
- Spill temporaries with few definitions and uses
- Avoid spilling in inner loops

Cache Optimization

- Consider the loop

```
for(j = 1; j < 10; j += 1)
for(i = 1; i < 1000000; i += 1)
a[i] *= b[i]
```

- Why does this have terrible cache performance?
- On the other hand,

```
for(i = 1; i < 1000000; i += 1)
    for(j = 1; j < 10; j += 1)
            a[i] *= b[i]
```

computes the same thing, but with much better (possibly 10x) performance [again why?].

- Compilers can do this: loop interchange.

Cache Optimization (II)

- Other kinds of memory layout decisions possible, such as padding rows of a matrix with extra bytes to avoid cache conflicts when traversing a column (or row in FORTRAN) of a matrix. [Why might that help?]
- Prefetching instructions on some hardware can inform cache of anticipated future memory fetches so that they can proceed in parallel. Again, it is possible for compilers to supply these to a limited extent.

Summary

- Both because it eases code generation, greatly improves performance, and because it is difficult for programmers to do it for themselves, register allocation is a "must have" optimization in production compilers for standard procedural languages.
- Graph coloring is a powerful register allocation scheme that compilers can apply automatically
- Good cache management could give even larger payoffs, but so far is difficult.

