
Lecture 36: Code Optimization

[Adapted from notes by R. Bodik and G. Necula]
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Introduction to Code Optimization

Code optimization is the usual term, but is grossly misnamed, since code
produced by “optimizers” is not optimal in any reasonable sense. Pro-
gram improvement would be more appropriate.

Topics:

• Basic blocks

• Control-flow graphs (CFGs)

• Algebraic simplification

• Constant folding

• Static single-assignment form (SSA)

• Common-subexpression elimination (CSE)

• Copy propagation

• Dead-code elimination

• Peephole optimizations
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Basic Blocks

• A basic block is a maximal sequence of instructions with:

– no labels (except at the first instruction), and

– no jumps (except for the last instruction).

• Idea:

– Cannot jump into a basic block, except at the beginning.

– Cannot jump within a basic block, except at end.

– Therefore, each instruction in a basic block is executed after all
the preceding instructions have been executed
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Basic-Block Example

• Consider the basic block

1. L1:

2. t := 2 * x

3. w := t + x

4. if w > 0 goto L2

• No way for (3) to be executed without (2) having been executed
right before

• We can change (3) to w := 3 * x

• Can we eliminate (2) as well?
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Control-Flow Graphs (CFGs)

• A control-flow graph is a directed graph with basic blocks as nodes.

• There is an edge from block A to block B if the execution can flow
from the last instruction in A to the first instruction in B:

– The last instruction in A can be a jump to the label of B.

– Or execution can fall through from the end of block A to the
beginning of block B.
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Control-Flow Graphs: Example

x := 1

i := 1

L:

x := x * x

i := i + 1

if i < 10 goto L

• The body of a method (or pro-
cedure) can be represented as a
CFG

• There is one initial node

• All “return” nodes are terminal
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Optimization Overview

• Optimization seeks to improve a program’s utilization of some re-
source:

– Execution time (most often)

– Code size

– Network messages sent

– Battery power used, etc.

• Optimization should not depart from the programming language’s se-
mantics

• So if the semantics of a particular program is deterministic, opti-
mization must not change the answer.

• On the other hand, some program behavior is undefined (e.g., what
happens when an unchecked rule in C is violated), and in those cases,
optimization may cause differences in results.
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A Classification of Optimizations

• For languages like C and Java there are three granularities of opti-
mizations

1. Local optimizations: Apply to a basic block in isolation.

2. Global optimizations: Apply to a control-flow graph (single func-
tion body) in isolation.

3. Inter-procedural optimizations: Apply across function boundaries.

• Most compilers do (1), many do (2) and some do a limited form of (3).

• Problem is expense: (2) and (3) typically require superlinear time.
Can usually handle that when limited to a single function, but gets
problematic for larger program.

• In practice, generally don’t implement fanciest known optimizations:
some are hard to implement (esp., hard to get right), some require a
lot of compilation time.

• The goal: maximum improvement with minimum cost.
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Local Optimizations: Algebraic Simplification

• Some statements can be deleted

x := x + 0

x := x * 1

• Some statements can be simplified or converted to use faster op-
erations:

Original Simplified
x := x * 0 x := 0

y := y ** 2 y := y * y

x := x * 8 x := x << 3

x := x * 15 t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 9



Local Optimization: Constant Folding

• Operations on constants can be computed at compile time.

• Example: x := 2 + 2 becomes x := 4.

• Example: if 2 < 0 jump L becomes a no-op.
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Global Optimization: Unreachable code elimination

• Basic blocks that are not reachable from the entry point of the CFG
may be eliminated.

• Why would such basic blocks occur?

• Removing unreachable code makes the program smaller (sometimes
also faster, due to instruction-cache effects, but this is probably
not a terribly large effect.)
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Single Assignment Form

• Some optimizations are simplified if each assignment is to a tempo-
rary that has not appeared already in the basic block.

• Intermediate code (on the left) can be rewritten to be in (static)
single assignment (SSA) form (on the right):

x := a + y x := a + y

a := x a1 := x

x := a * x x1 := a1 * x

b := x + a b := x1 + a1

where x1 and a1 are fresh temporaries.

• As a result, there is at most one assignment to any register.
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Common SubExpression (CSE) Elimination in Basic Blocks

• A common subexpression is an expression that appears multiple times
on a right-hand side in contexts where the operands have the same
values in each case (so that the expression will yield the same value).

• Assume that the basic block on the left is in single assignment form.

x := y + z x := y + z

. . .

. . .

w := y + z w := x

• That is, if two assignments have the same right-hand side, we can
replace the second instance of that right-hand side with the vari-
able that was assigned the first instance.

• How did we use the assumption of single assignment here?
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Copy Propagation

• If w := x appears in a block, can replace all subsequent uses of w

with uses of x.

• Example:

b := z+y b := z+y

a := b a := b

x := 2*a x := 2*b

• This does not make the program smaller or faster but might enable
other optimizations. For example, if a is not used after this state-
ment, we need not assign to it.

• Or consider:

b:=13 b:=13

x:=2*b x:=2*13

which immediately enables constant folding.

• Again, the optimization, as described, won’t work unless the block is
in single assignment form.
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Another Example of Copy Propagation and Constant
Folding

a := 5 a := 5 a := 5 a := 5 a := 5

x := 2 * a x := 2 * 5 x := 10 x := 10 x := 10

y := x + 6 y := x + 6 y := 10 + 6 y := 16 y := 16

t := x * y t := x * y t := 10 * y t := 10 * 16 t := 160
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Dead Code Elimination

• If the statement w := rhs appears in a basic block and w does not
appear anywhere else in the program, we say that the statement is
dead and can be eliminated; it does not contribute to the program’s
result.

• Example: (a is not used anywhere else)

b := z + y b := z + y b := z + y

a := b a := b

x := 2 * a x := 2 * b x := 2 * b

• How have I used SSA here?
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Applying Local Optimizations

• As the examples show, each local optimization does very little by
itself.

• Typically, optimizations interact: performing one optimization en-
ables others.

• So typical optimizing compilers repeatedly perform optimizations
until no improvement is possible, or it is no longer cost effective.
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An Example: Initial Code

a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f
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Example (II): Applying Algebraic Simplification

a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f
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Example (II): Applying Algebraic Simplification

a := x * x

b := 3

c := x

d := c * c

e := b + b

f := a + d

g := e * f
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Example (III): Using Copy Propagation

a := x * x

b := 3

c := x

d := c * c

e := b + b

f := a + d

g := e * f
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Example (III): Using Copy Propagation

a := x * x

b := 3

c := x

d := x * x

e := 3 + 3

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 20



Example (IV): Using Constant Folding

a := x * x

b := 3

c := x

d := x * x

e := 3 + 3

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 21



Example (IV): Using Constant Folding

a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 21



Example (V): Performing Common Subexpression
Elimination

a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f
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Example (V): Performing Common Subexpression
Elimination

a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f
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Example (VI): Using Copy Propagation (II)

a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f
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Example (VI): Using Copy Propagation (II)

a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f
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Example (VII): Using Dead Code Elimination

a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f
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Example (VII): Using Dead Code Elimination

a := x * x

f := a + a

g := 6 * f

This is the final form.
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Peephole Optimizations on Assembly Code

• The optimizations presented before work on intermediate code.

• Peephole optimization is a technique for improving assembly code
directly

– The “peephole” is a short subsequence of (usually contiguous) in-
structions, either continguous, or linked together by the fact
that they operate on certain registers that no intervening in-
structions modify.

– The optimizer replaces the sequence with another equivalent, but
(one hopes) better one.

– Write peephole optimizations as replacement rules

i1; . . . ; in ⇒ j1; . . . ; jm

possibly plus additional constraints. The j’s are the improved ver-
sion of the i’s.
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Peephole optimization examples:

• We’ll use the notation ‘@A’ for pattern variables.

• Example:

mv @a, @b; L: mv @b, @a ⇒ mv @a, @b

assuming L is not the target of a jump.

• Example:

addi @a, @a, @k1; @b, lw @k2(@a)
⇒ lw @b, @k1+@k2(a)

assuming a is “dead”.

• Wild example (PDP11):

mov #@I, @I(@ra) ⇒ mov (r7), @I(@ra)

This is a real hack: we reuse the value I as both the immediate value
and the offset from ra. On the PDP11, the program counter is r7.

• As for local optimizations, peephole optimizations need to be applied
repeatedly to get maximum effect.
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Problems:

• Serious problem: what to do with pointers? Problem is aliasing: two
names for the same variable:

– As a result, *t may change even if local variable t does not and
we never assign to *t.

– Affects language design: rules about overlapping parameters in
Fortran, and the restrict keyword in C.

– Arrays are a special case (address calculation): is A[i] the same
as A[j]? Sometimes the compiler can tell, depending on what it
knows about i and j.
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Problems (II):

• What about globals variables and calls?

– Calls are not exactly jumps, because they (almost) always return.

– Can modify global variables used by caller, and typically the com-
piler can’t tell.

– Also affects language design: GNU C/C++ have declarations such
as

int square (int) __attribute__ ((const));

int memory_use () __attribute__ ((pure));

to tell the compiler that it may assume global variables are un-
modified and, in the case of const, that they are not read either.
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Global Optimization

• Global optimization refers to program optimizations that encompass
multiple basic blocks in a function.

• (I have used the term galactic optimization to refer to going beyond
function boundaries, but it hasn’t caught on; we call it just interpro-
cedural optimization.)

• Since we can’t use the usual assumptions about basic blocks, global
optimization requires global flow analysis to see where values can
come from and get used.

• The overall question is: When can local optimizations (from the last
lecture) be applied across multiple basic blocks?
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A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X
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A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

• Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.
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A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3

• Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.
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A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

• Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.

• But as soon as one other block on the path to the bottom block
assigns to X, we can no longer do so.

• It is correct to apply copy propagation to a variable x from an as-
signment statement A: x := ... to a given use of x in statement B
only if the last assignment to x in every path from to B is A.
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Issues

• This correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of con-
ditionals

• Checking the condition requires global analysis: an analysis of the
entire control-flow graph for one method body.

• This is typical for optimizations that depend on some property P at
a particular point in program execution.

• Indeed, property P is typically undecidable, so program optimization
is all about making conservative (but not cowardly) approximations
of P .
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Undecidability of Program Properties

• Rice’s “theorem:” Most interesting dynamic properties of a program
are undecidable. E.g.,

– Does the program halt on all (some) inputs? (Halting Problem)

– Is the result of a function F always positive? (Consider

def F(x):

H(x)

return 1

Result is positive iff H halts.)

• Syntactic properties are typically decidable (e.g., “How many occur-
rences of x are there?”).

• Theorem does not apply in absence of loops.
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Conservative Program Analyses

• If a certain optimization requires P to be true, then

– If we know that P is definitely true, we can apply the optimiza-
tion

– If we don’t know whether P is true, we simply don’t do the op-
timization. Since optimizations are not supposed to change the
meaning of a program, this is safe.

• In other words, in analyzing a program for properties like P , it is
always correct (albeit non-optimal) to say “don’t know.”

• The trick is to say it as seldom as possible.

• Global dataflow analysis is a standard technique for solving problems
with these characteristics.
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Example: Global Constant Propagation

• Global constant propagation is just the restriction of copy propaga-
tion to constants.

• In this example, we’ll consider doing it for a single variable (X).

• At every program point (i.e., before or after any instruction), we
associate one of the following values with X

Value Interpretation

# (aka bottom) No value has reached here (yet)

c (For c a constant) X definitely has the value c.

* (aka top) Don’t know what, if any, constant value X has.
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Example of Result of Constant Propagation

X := 3

B > 0

X = *

X = 3

X = 3

Y := Z + W

X := 4

X = 3

X = 3

X = 4

Y := 0
X = 3

X = 3

A := 2 * X
X = *

X = *
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Using Analysis Results

• Given global constant information, it is easy to perform the opti-
mization:

– If the point immediately before a statement using x tells us that
x = c, then replace x with c.

– Otherwise, leave it alone (the conservative option).

• But how do we compute these properties x = ...?
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Transfer Functions

• Basic Idea: Express the analysis of a complicated program as a com-
bination of simple rules relating the change in information between
adjacent statements

• That is, we “push” or transfer information from one statement to
the next.

• For each statement s, we end up with information about the value
of x immediately before and after s:

Cin(X,s) = value of x before s

Cout(X,s) = value of x after s

• Here, the “values of x” we use come from an abstract domain, con-
taining the values we care about—#, *, k—values computed statically
by our analysis.

• For the constant propagation problem, we’ll compute Cout from Cin,
and we’ll get Cin from the Couts of predecessor statements, Cout(X,
p1),. . . ,Cout(X,pn).
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Constant Propagation: Rule 1

p1
X = ?

p2
X = ?

p3
X = *

· · ·
pn

X = ?

s
X = *

If Cout(X, pi) = * for some i, then Cin(X, s) = *
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Constant Propagation: Rule 2

p1
X = c

p2
X = ?

p3
X = d

· · ·
pn

X = ?

s
X = *

If Cout(X, pi) = c and Cout(X, pj) = d with constants c 6= d,
then Cin(X, s) = *
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Constant Propagation: Rule 3

p1
X = c

p2
X = #

p3
X = c

· · ·
pn

X = #

s
X = c

If Cout(X, pi) = c for some i and
Cout(X, pj) = c or Cout(X, pj) = # for all j,

then Cin(X, s) = c
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Constant Propagation: Rule 4

p1
X = #

p2
X = #

p3
X = #

· · ·
pn

X = #

s
X = #

If Cout(X, pj) = # for all j, then Cin(X, s) = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 41



Constant Propagation: Computing Cout

• Rules 1–4 relate the out of one statement to the in of the succes-
sor statements, thus propagating information forward across CFG
edges.

• Now we need local rules relating the in and out of a single statement
to propagate information across statements.
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Constant Propagation: Rule 5

s
X = #

X = #

Cout(X, s) = # if Cin(X, s) = #

The value ‘#’ means “so far, no value of X gets here, because we don’t
(yet) know that this statement ever gets executed.”
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Constant Propagation: Rule 6

X := c
X = ?

X = c

Cout(X, X := c) = c if c is a constant and ? is not #.
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Constant Propagation: Rule 7

X := f(. . . )
X = ?

X = *

Cout(X, X := f(. . . )) = * for any function call, if ? is not #.
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Constant Propagation: Rule 8

Y := . . .
X = α

X = α

Cout(X, Y := . . . ) = Cin(X, Y := . . . ) if X and Y are different variables.
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Propagation Algorithm

• To use these rules, we employ a standard technique: iteration to a
fixed point:

• Mark all points in the program with current approximations of the
variable(s) of interest (X in our examples).

• Set the initial approximations to X = * for the program entry point
and X = # everywhere else.

• Repeatedly apply rules 1–8 every place they are applicable until noth-
ing changes—until the program is at a fixed point with respect to all
the transfer rules.

• We can be clever about this, keeping a list of all nodes any of whose
predecessors’ Cout values have changed since the last rule applica-
tion.
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An Example of the Algorithm

X := 3

B > 0

X = *

X = #

X = #

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #
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An Example of the Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #
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An Example of the Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

A < B

X = #

X = #

X = #
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An Example of the Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

A < B

X = # 3

X = # 3

X = # 3

So we can replace X with 3 in the bottom block.
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Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = #

X = #

Y := Z + W

X := 4

X = #

X = #

X = #

Y := 0
X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #
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Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = #

X = #

X = #

Y := 0
X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #
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Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = # 3

X = # 3

X = # 4

Y := 0
X = # 3

X = # 3

A := 2 * X

A < B

X = #

X = #

X = #
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Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = # 3

X = # 3

X = # 4

Y := 0
X = # 3

X = # 3

A := 2 * X

A < B

X = # *

X = # *

X = # *
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Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = # 3

X = # 3

X = # 4

Y := 0
X = # 3 *

X = # 3 *

A := 2 * X

A < B

X = # *

X = # *

X = # *

Here, we cannot replace X in two of the basic blocks.
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A Third Example

X := 3

B > 0

X = *

X = #

X = #

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

X := 4

A < B

X = #

X = #

X = #

X = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 50



A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

X := 4

A < B

X = #

X = #

X = #

X = #
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A Third Example
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Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

X := 4

A < B

X = # 3
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X = # 4
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A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3 *

X = # 3 *

A := 2 * X

X := 4

A < B

X = # 3

X = # 3

X = # 4

X = # 4
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A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3 *

X = # 3 *

A := 2 * X

X := 4

A < B

X = # 3 *

X = # 3 *

X = # 4

X = # 4

Likewise, we cannot replace X.
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Comments

• The examples used a breadth-first approach to considering possible
places to apply the rules, starting from the entry point.

• In fact, the order in which one looks at statements is irrelevant.
We could have changed the Cout values after the assignments to X

first, for example.

• The # value is necessary to avoid deciding on a final value too soon.
In effect, it allows us to tentatively propagate constant values through
before finding out what happens in paths we haven’t looked at yet.
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Ordering the Abstract Domain

• We can simplify the presentation of the analysis by ordering the
values # < c < *.

• Or pictorially, with lower meaning less than,

· · · −1 0 1 2 · · ·

*

#

• . . . a mathematical structure known as a lattice.

• With this, our rule for computing Cin is simply a least upper bound:

Cin(x, s) = lub { Cout(x, p) such that p is a predecessor of s }.
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Termination

• Simply saying “repeat until nothing changes” doesn’t guarantee that
eventually nothing changes.

• But the use of lub explains why the algorithm terminates:

– Values start as # and only increase

– By the structure of the lattice, therefore, each value can only
change twice.

• Thus the algorithm is linear in program size. The number of steps

= 2× Number of Cin and Cout values computed

= 4× Number of program statements.
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Liveness Analysis

Once constants have been globally propagated, we would like to elimi-
nate dead code

X := 3

B > 0

X = *

X = 3

X = 3

Y := Z + W
X = 3

X = 3
Y := 0

X = 3

X = 3

A := 2 * X

A < B

X = 3

X = 3

X = 3

After constant propagation, X := 3 is dead code (assuming this is the
entire CFG)
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Terminology: Live and Dead

• In the program

X := 3; /*(1)*/ X = 4; /*(2)*/ Y := X /*(3)*/

• the variable X is dead (never used) at point (1), live at point (2), and
may or may not be live at point (3), depending on the rest of the
program.

• More generally, a variable x is live at statement s if

– There exists a statement s’ that uses x;

– There is a path from s to s’; and

– That path has no intervening assignment to x

• A statement x := ... is dead code (and may be deleted) if x is
dead after the assignment.
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Computing Liveness

• We can express liveness as a function of information transferred
between adjacent statements, just as in copy propagation

• Liveness is simpler than constant propagation, since it is a boolean
property (true or false).

• That is, the lattice has two values, with false<true.

• It also differs in that liveness depends on what comes after a state-
ment, not before—we propagate information backwards through the
flow graph, from Lout (liveness information at the end of a stat-
ment) to Lin.
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Liveness Rule 1

s1
L(X) = ?

s2
L(X) = ?

s3
L(X) = true

· · ·
sn

L(X) = ?

p
L(X) = true

• So

Lout(x, p) = lub { Lin(x, s) such that p is a predecessor of s }.

• Here, least upper bound (lub) is the same as “or”.
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Liveness Rule 2

. . . := . . . X . . .
L(X) = true

L(X) = ?

Lin(X, s) = true if s uses the previous value of X.

• The same rule applies to any other statement that uses the value of
X, such as tests (e.g., X < 0).
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Liveness Rule 3

X := e
L(X) = false

L(X) = ?

Lin(X, X := e) = false if e does not use the previous value of X.
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Liveness Rule 4

s
L(X) = α

L(X) = α

Lout(X, s) = Lin(X, s) if s does not mention X.
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Propagation Algorithm for Liveness

• Initially, let all Lin and Lout values be false.

• Set Lout value at the program exit to true iff x is going to be used
elsewhere (e.g., if it is global and we are analyzing only one proce-
dure).

• As before, repeatedly pick s where one of 1–4 does not hold and
update using the appropriate rule, until there are no more violations.

• When we’re done, we can eliminate assignments to X if X is dead at
the point after the assignment.
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Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false

L(X) = false

Y := Z + W

L(X) = false

L(X) = false

Y := 0
L(X) = false

L(X) = false

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false
L(X) = false
L(X) = false
L(X) = false
L(X) = false

L(X) = false
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Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false

L(X) = false

Y := Z + W

L(X) = false

L(X) = false

Y := 0
L(X) = false

L(X) = false

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false true
L(X) = false true
L(X) = false
L(X) = false
L(X) = false

L(X) = false
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Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false

L(X) = false

Y := Z + W

L(X) = false true

L(X) = false true

Y := 0
L(X) = false true

L(X) = false true

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false true
L(X) = false true
L(X) = false
L(X) = false
L(X) = false

L(X) = false
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Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false true

L(X) = false true

Y := Z + W

L(X) = false true

L(X) = false true

Y := 0
L(X) = false true

L(X) = false true

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false true
L(X) = false true
L(X) = false
L(X) = false true
L(X) = false true

L(X) = false
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Termination

• As before, a value can only change a bounded number of times: the
bound being 1 in this case.

• Termination is guaranteed

• Once the analysis is computed, it is simple to eliminate dead code,
but having done so, we must recompute the liveness information.
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SSA and Global Analysis

• For local optimizations, the single static assignment (SSA) form was
useful.

• But applying it to a full CFG is requires a trick.

• E.g., how do we avoid two assignments to the temporary holding x

after this conditional?

if a > b:

x = a

else:

x = b

# where is x at this point?

• Answer: a small kludge known as φ “functions”

• Turn the previous example into this:

if a > b:

x1 = a

else:

x2 = b

x3 = φ(x1, x2)
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φ Functions

• An artificial device to allow SSA notation in CFGs.

• In a basic block, each variable is associated with one definition,

• φ functions in effect associate each variable with a set of possible
definitions.

• In general, one tries to introduce them in strategic places so as to
minimize the total number of φs.

• Although this device increases number of assignments in IL, regis-
ter allocation can remove many by assigning related IL registers to
the same real register.

• Their use enables us to extend such optimizations as CSE elimination
in basic blocks to Global CSE Elimination.

• With SSA form, easy to tell (conservatively) if two IL assignments
compute the same value: just see if they have the same right-hand
side. The same variables indicate the same values.
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Loops

• In a CFG, a loop is simply a set of basic blocks, L, containing an entry
block, e, such that

– All paths from the entry node of the entire CFG to a block in L

include e;

– All predecessors of a node in L are also in L (except for e, which
must have a predecessor outside L).

– Every node in L has a path in L back to e.

• Here, for example,

j = i+1;

while (j < N)

A[j] = A[j] / A[i]

The entry node contains the test j < n and the rest of the loop is
the node containing the assigment to A[j], which then loops back to
the entry.
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Invariant Code Motion

• Consider the loop

while (i < N)

A[i] = A[i] + j * x;

• Since j * x does not change in the loop, we can rewrite this as

tmp = j * x;

while (i < N)

A[i] = A[i] + tmp;

• This is an example of invariant code motion out of a loop.

• What tells us that j*x does not change?

• We see that all assignments to j and x that apply at the point where
the product is computed are outside the loop.

• And this we can get by observing where the assignments to the SSA-
form for those variables are.
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Code Motion Caveat

• Code motion is not always appropriate.

• If the code to be moved, has side effects, or might cause an excep-
tion, could change the results.

• If the code is expensive, you will increase the time required for the
program when the loop is not executed.

• Hence, you will see compilers rewrite loops like this:

if (i < N) {

/* Preheader */

while (i < N)

A[i] = A[i] + j * x;

}

where Preheader marks a spot where the compiler can insert a new
block to hold code moved out of the loop.
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Summary

• We’ve seen two kinds of analysis:

– Constant propagation is a forward analysis: information is pushed
from inputs to outputs.

– Liveness is a backwards analysis: information is pushed from out-
puts back towards inputs.

• But both make use of essentially the same algorithm.

• Numerous other analyses fall into these categories, and allow us to
use a similar formulation:

– An abstract domain (abstract relative to actual values);

– Local rules relating information between consecutive program points
around a single statement; and

– Lattice operations like least upper bound (or join) or greatest
lower bound (or meet) to relate inputs and outputs of adjoining
statements.
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