
Lecture 36: Code Optimization

[Adapted from notes by R. Bodik and G. Necula]

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 1

Introduction to Code Optimization

Code optimization is the usual term, but is grossly misnamed, since code
produced by “optimizers” is not optimal in any reasonable sense. Pro-
gram improvement would be more appropriate.

Topics:

• Basic blocks

• Control-flow graphs (CFGs)

• Algebraic simplification

• Constant folding

• Static single-assignment form (SSA)

• Common-subexpression elimination (CSE)

• Copy propagation

• Dead-code elimination

• Peephole optimizations

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 2

Basic Blocks

• A basic block is a maximal sequence of instructions with:

– no labels (except at the first instruction), and

– no jumps (except for the last instruction).

• Idea:

– Cannot jump into a basic block, except at the beginning.

– Cannot jump within a basic block, except at end.

– Therefore, each instruction in a basic block is executed after all
the preceding instructions have been executed

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 3

Basic-Block Example

• Consider the basic block

1. L1:

2. t := 2 * x

3. w := t + x

4. if w > 0 goto L2

• No way for (3) to be executed without (2) having been executed
right before

• We can change (3) to w := 3 * x

• Can we eliminate (2) as well?

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 4

Control-Flow Graphs (CFGs)

• A control-flow graph is a directed graph with basic blocks as nodes.

• There is an edge from block A to block B if the execution can flow
from the last instruction in A to the first instruction in B:

– The last instruction in A can be a jump to the label of B.

– Or execution can fall through from the end of block A to the
beginning of block B.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 5

Control-Flow Graphs: Example

x := 1

i := 1

L:

x := x * x

i := i + 1

if i < 10 goto L

• The body of a method (or pro-
cedure) can be represented as a
CFG

• There is one initial node

• All “return” nodes are terminal

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 6

Optimization Overview

• Optimization seeks to improve a program’s utilization of some re-
source:

– Execution time (most often)

– Code size

– Network messages sent

– Battery power used, etc.

• Optimization should not depart from the programming language’s se-
mantics

• So if the semantics of a particular program is deterministic, opti-
mization must not change the answer.

• On the other hand, some program behavior is undefined (e.g., what
happens when an unchecked rule in C is violated), and in those cases,
optimization may cause differences in results.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 7

A Classification of Optimizations

• For languages like C and Java there are three granularities of opti-
mizations

1. Local optimizations: Apply to a basic block in isolation.

2. Global optimizations: Apply to a control-flow graph (single func-
tion body) in isolation.

3. Inter-procedural optimizations: Apply across function boundaries.

• Most compilers do (1), many do (2) and some do a limited form of (3).

• Problem is expense: (2) and (3) typically require superlinear time.
Can usually handle that when limited to a single function, but gets
problematic for larger program.

• In practice, generally don’t implement fanciest known optimizations:
some are hard to implement (esp., hard to get right), some require a
lot of compilation time.

• The goal: maximum improvement with minimum cost.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 8

Local Optimizations: Algebraic Simplification

• Some statements can be deleted

x := x + 0

x := x * 1

• Some statements can be simplified or converted to use faster op-
erations:

Original Simplified
x := x * 0 x := 0

y := y ** 2 y := y * y

x := x * 8 x := x << 3

x := x * 15 t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 9

Local Optimization: Constant Folding

• Operations on constants can be computed at compile time.

• Example: x := 2 + 2 becomes x := 4.

• Example: if 2 < 0 jump L becomes a no-op.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 10

Global Optimization: Unreachable code elimination

• Basic blocks that are not reachable from the entry point of the CFG
may be eliminated.

• Why would such basic blocks occur?

• Removing unreachable code makes the program smaller (sometimes
also faster, due to instruction-cache effects, but this is probably
not a terribly large effect.)

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 11

Single Assignment Form

• Some optimizations are simplified if each assignment is to a tempo-
rary that has not appeared already in the basic block.

• Intermediate code (on the left) can be rewritten to be in (static)
single assignment (SSA) form (on the right):

x := a + y x := a + y

a := x a1 := x

x := a * x x1 := a1 * x

b := x + a b := x1 + a1

where x1 and a1 are fresh temporaries.

• As a result, there is at most one assignment to any register.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 12

Common SubExpression (CSE) Elimination in Basic Blocks

• A common subexpression is an expression that appears multiple times
on a right-hand side in contexts where the operands have the same
values in each case (so that the expression will yield the same value).

• Assume that the basic block on the left is in single assignment form.

x := y + z x := y + z

. . .

. . .

w := y + z w := x

• That is, if two assignments have the same right-hand side, we can
replace the second instance of that right-hand side with the vari-
able that was assigned the first instance.

• How did we use the assumption of single assignment here?

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 13

Copy Propagation

• If w := x appears in a block, can replace all subsequent uses of w

with uses of x.

• Example:

b := z+y b := z+y

a := b a := b

x := 2*a x := 2*b

• This does not make the program smaller or faster but might enable
other optimizations. For example, if a is not used after this state-
ment, we need not assign to it.

• Or consider:

b:=13 b:=13

x:=2*b x:=2*13

which immediately enables constant folding.

• Again, the optimization, as described, won’t work unless the block is
in single assignment form.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 14

Another Example of Copy Propagation and Constant
Folding

a := 5 a := 5 a := 5 a := 5 a := 5

x := 2 * a x := 2 * 5 x := 10 x := 10 x := 10

y := x + 6 y := x + 6 y := 10 + 6 y := 16 y := 16

t := x * y t := x * y t := 10 * y t := 10 * 16 t := 160

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 15

Dead Code Elimination

• If the statement w := rhs appears in a basic block and w does not
appear anywhere else in the program, we say that the statement is
dead and can be eliminated; it does not contribute to the program’s
result.

• Example: (a is not used anywhere else)

b := z + y b := z + y b := z + y

a := b a := b

x := 2 * a x := 2 * b x := 2 * b

• How have I used SSA here?

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 16

Applying Local Optimizations

• As the examples show, each local optimization does very little by
itself.

• Typically, optimizations interact: performing one optimization en-
ables others.

• So typical optimizing compilers repeatedly perform optimizations
until no improvement is possible, or it is no longer cost effective.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 17

An Example: Initial Code

a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 18

Example (II): Applying Algebraic Simplification

a := x ** 2

b := 3

c := x

d := c * c

e := b * 2

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 19

Example (II): Applying Algebraic Simplification

a := x * x

b := 3

c := x

d := c * c

e := b + b

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 19

Example (III): Using Copy Propagation

a := x * x

b := 3

c := x

d := c * c

e := b + b

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 20

Example (III): Using Copy Propagation

a := x * x

b := 3

c := x

d := x * x

e := 3 + 3

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 20

Example (IV): Using Constant Folding

a := x * x

b := 3

c := x

d := x * x

e := 3 + 3

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 21

Example (IV): Using Constant Folding

a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 21

Example (V): Performing Common Subexpression
Elimination

a := x * x

b := 3

c := x

d := x * x

e := 6

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 22

Example (V): Performing Common Subexpression
Elimination

a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 22

Example (VI): Using Copy Propagation (II)

a := x * x

b := 3

c := x

d := a

e := 6

f := a + d

g := e * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 23

Example (VI): Using Copy Propagation (II)

a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 23

Example (VII): Using Dead Code Elimination

a := x * x

b := 3

c := x

d := a

e := 6

f := a + a

g := 6 * f

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 24

Example (VII): Using Dead Code Elimination

a := x * x

f := a + a

g := 6 * f

This is the final form.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 24

Peephole Optimizations on Assembly Code

• The optimizations presented before work on intermediate code.

• Peephole optimization is a technique for improving assembly code
directly

– The “peephole” is a short subsequence of (usually contiguous) in-
structions, either continguous, or linked together by the fact
that they operate on certain registers that no intervening in-
structions modify.

– The optimizer replaces the sequence with another equivalent, but
(one hopes) better one.

– Write peephole optimizations as replacement rules

i1; . . . ; in ⇒ j1; . . . ; jm

possibly plus additional constraints. The j’s are the improved ver-
sion of the i’s.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 25

Peephole optimization examples:

• We’ll use the notation ‘@A’ for pattern variables.

• Example:

mv @a, @b; L: mv @b, @a ⇒ mv @a, @b

assuming L is not the target of a jump.

• Example:

addi @a, @a, @k1; @b, lw @k2(@a)
⇒ lw @b, @k1+@k2(a)

assuming a is “dead”.

• Wild example (PDP11):

mov #@I, @I(@ra) ⇒ mov (r7), @I(@ra)

This is a real hack: we reuse the value I as both the immediate value
and the offset from ra. On the PDP11, the program counter is r7.

• As for local optimizations, peephole optimizations need to be applied
repeatedly to get maximum effect.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 26

Problems:

• Serious problem: what to do with pointers? Problem is aliasing: two
names for the same variable:

– As a result, *t may change even if local variable t does not and
we never assign to *t.

– Affects language design: rules about overlapping parameters in
Fortran, and the restrict keyword in C.

– Arrays are a special case (address calculation): is A[i] the same
as A[j]? Sometimes the compiler can tell, depending on what it
knows about i and j.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 27

Problems (II):

• What about globals variables and calls?

– Calls are not exactly jumps, because they (almost) always return.

– Can modify global variables used by caller, and typically the com-
piler can’t tell.

– Also affects language design: GNU C/C++ have declarations such
as

int square (int) __attribute__ ((const));

int memory_use () __attribute__ ((pure));

to tell the compiler that it may assume global variables are un-
modified and, in the case of const, that they are not read either.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 28

Global Optimization

• Global optimization refers to program optimizations that encompass
multiple basic blocks in a function.

• (I have used the term galactic optimization to refer to going beyond
function boundaries, but it hasn’t caught on; we call it just interpro-
cedural optimization.)

• Since we can’t use the usual assumptions about basic blocks, global
optimization requires global flow analysis to see where values can
come from and get used.

• The overall question is: When can local optimizations (from the last
lecture) be applied across multiple basic blocks?

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 29

A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 30

A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

• Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 30

A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3

• Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 30

A Simple Example: Copy Propagation

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

• Without other assignments to X, it is valid to treat the red parts as
if they were in the same basic block.

• But as soon as one other block on the path to the bottom block
assigns to X, we can no longer do so.

• It is correct to apply copy propagation to a variable x from an as-
signment statement A: x := ... to a given use of x in statement B
only if the last assignment to x in every path from to B is A.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 30

Issues

• This correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of con-
ditionals

• Checking the condition requires global analysis: an analysis of the
entire control-flow graph for one method body.

• This is typical for optimizations that depend on some property P at
a particular point in program execution.

• Indeed, property P is typically undecidable, so program optimization
is all about making conservative (but not cowardly) approximations
of P .

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 31

Undecidability of Program Properties

• Rice’s “theorem:” Most interesting dynamic properties of a program
are undecidable. E.g.,

– Does the program halt on all (some) inputs? (Halting Problem)

– Is the result of a function F always positive? (Consider

def F(x):

H(x)

return 1

Result is positive iff H halts.)

• Syntactic properties are typically decidable (e.g., “How many occur-
rences of x are there?”).

• Theorem does not apply in absence of loops.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 32

Conservative Program Analyses

• If a certain optimization requires P to be true, then

– If we know that P is definitely true, we can apply the optimiza-
tion

– If we don’t know whether P is true, we simply don’t do the op-
timization. Since optimizations are not supposed to change the
meaning of a program, this is safe.

• In other words, in analyzing a program for properties like P , it is
always correct (albeit non-optimal) to say “don’t know.”

• The trick is to say it as seldom as possible.

• Global dataflow analysis is a standard technique for solving problems
with these characteristics.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 33

Example: Global Constant Propagation

• Global constant propagation is just the restriction of copy propaga-
tion to constants.

• In this example, we’ll consider doing it for a single variable (X).

• At every program point (i.e., before or after any instruction), we
associate one of the following values with X

Value Interpretation

(aka bottom) No value has reached here (yet)

c (For c a constant) X definitely has the value c.

* (aka top) Don’t know what, if any, constant value X has.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 34

Example of Result of Constant Propagation

X := 3

B > 0

X = *

X = 3

X = 3

Y := Z + W

X := 4

X = 3

X = 3

X = 4

Y := 0
X = 3

X = 3

A := 2 * X
X = *

X = *

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 35

Using Analysis Results

• Given global constant information, it is easy to perform the opti-
mization:

– If the point immediately before a statement using x tells us that
x = c, then replace x with c.

– Otherwise, leave it alone (the conservative option).

• But how do we compute these properties x = ...?

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 36

Transfer Functions

• Basic Idea: Express the analysis of a complicated program as a com-
bination of simple rules relating the change in information between
adjacent statements

• That is, we “push” or transfer information from one statement to
the next.

• For each statement s, we end up with information about the value
of x immediately before and after s:

Cin(X,s) = value of x before s

Cout(X,s) = value of x after s

• Here, the “values of x” we use come from an abstract domain, con-
taining the values we care about—#, *, k—values computed statically
by our analysis.

• For the constant propagation problem, we’ll compute Cout from Cin,
and we’ll get Cin from the Couts of predecessor statements, Cout(X,
p1),. . . ,Cout(X,pn).

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 37

Constant Propagation: Rule 1

p1
X = ?

p2
X = ?

p3
X = *

· · ·
pn

X = ?

s
X = *

If Cout(X, pi) = * for some i, then Cin(X, s) = *

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 38

Constant Propagation: Rule 2

p1
X = c

p2
X = ?

p3
X = d

· · ·
pn

X = ?

s
X = *

If Cout(X, pi) = c and Cout(X, pj) = d with constants c 6= d,
then Cin(X, s) = *

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 39

Constant Propagation: Rule 3

p1
X = c

p2
X = #

p3
X = c

· · ·
pn

X = #

s
X = c

If Cout(X, pi) = c for some i and
Cout(X, pj) = c or Cout(X, pj) = # for all j,

then Cin(X, s) = c

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 40

Constant Propagation: Rule 4

p1
X = #

p2
X = #

p3
X = #

· · ·
pn

X = #

s
X = #

If Cout(X, pj) = # for all j, then Cin(X, s) = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 41

Constant Propagation: Computing Cout

• Rules 1–4 relate the out of one statement to the in of the succes-
sor statements, thus propagating information forward across CFG
edges.

• Now we need local rules relating the in and out of a single statement
to propagate information across statements.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 42

Constant Propagation: Rule 5

s
X = #

X = #

Cout(X, s) = # if Cin(X, s) = #

The value ‘#’ means “so far, no value of X gets here, because we don’t
(yet) know that this statement ever gets executed.”

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 43

Constant Propagation: Rule 6

X := c
X = ?

X = c

Cout(X, X := c) = c if c is a constant and ? is not #.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 44

Constant Propagation: Rule 7

X := f(. . .)
X = ?

X = *

Cout(X, X := f(. . .)) = * for any function call, if ? is not #.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 45

Constant Propagation: Rule 8

Y := . . .
X = α

X = α

Cout(X, Y := . . .) = Cin(X, Y := . . .) if X and Y are different variables.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 46

Propagation Algorithm

• To use these rules, we employ a standard technique: iteration to a
fixed point:

• Mark all points in the program with current approximations of the
variable(s) of interest (X in our examples).

• Set the initial approximations to X = * for the program entry point
and X = # everywhere else.

• Repeatedly apply rules 1–8 every place they are applicable until noth-
ing changes—until the program is at a fixed point with respect to all
the transfer rules.

• We can be clever about this, keeping a list of all nodes any of whose
predecessors’ Cout values have changed since the last rule applica-
tion.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 47

An Example of the Algorithm

X := 3

B > 0

X = *

X = #

X = #

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 48

An Example of the Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 48

An Example of the Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

A < B

X = #

X = #

X = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 48

An Example of the Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

A < B

X = # 3

X = # 3

X = # 3

So we can replace X with 3 in the bottom block.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 48

Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = #

X = #

Y := Z + W

X := 4

X = #

X = #

X = #

Y := 0
X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 49

Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = #

X = #

X = #

Y := 0
X = #

X = #

A := 2 * X

A < B

X = #

X = #

X = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 49

Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = # 3

X = # 3

X = # 4

Y := 0
X = # 3

X = # 3

A := 2 * X

A < B

X = #

X = #

X = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 49

Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = # 3

X = # 3

X = # 4

Y := 0
X = # 3

X = # 3

A := 2 * X

A < B

X = # *

X = # *

X = # *

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 49

Another Example of the Propagation Algorithm

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W

X := 4

X = # 3

X = # 3

X = # 4

Y := 0
X = # 3 *

X = # 3 *

A := 2 * X

A < B

X = # *

X = # *

X = # *

Here, we cannot replace X in two of the basic blocks.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 49

A Third Example

X := 3

B > 0

X = *

X = #

X = #

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

X := 4

A < B

X = #

X = #

X = #

X = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 50

A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = #

X = #
Y := 0

X = #

X = #

A := 2 * X

X := 4

A < B

X = #

X = #

X = #

X = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 50

A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

X := 4

A < B

X = #

X = #

X = #

X = #

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 50

A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3

X = # 3

A := 2 * X

X := 4

A < B

X = # 3

X = # 3

X = # 4

X = # 4

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 50

A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3 *

X = # 3 *

A := 2 * X

X := 4

A < B

X = # 3

X = # 3

X = # 4

X = # 4

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 50

A Third Example

X := 3

B > 0

X = *

X = # 3

X = # 3

Y := Z + W
X = # 3

X = # 3
Y := 0

X = # 3 *

X = # 3 *

A := 2 * X

X := 4

A < B

X = # 3 *

X = # 3 *

X = # 4

X = # 4

Likewise, we cannot replace X.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 50

Comments

• The examples used a breadth-first approach to considering possible
places to apply the rules, starting from the entry point.

• In fact, the order in which one looks at statements is irrelevant.
We could have changed the Cout values after the assignments to X

first, for example.

• The # value is necessary to avoid deciding on a final value too soon.
In effect, it allows us to tentatively propagate constant values through
before finding out what happens in paths we haven’t looked at yet.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 51

Ordering the Abstract Domain

• We can simplify the presentation of the analysis by ordering the
values # < c < *.

• Or pictorially, with lower meaning less than,

· · · −1 0 1 2 · · ·

*

#

• . . . a mathematical structure known as a lattice.

• With this, our rule for computing Cin is simply a least upper bound:

Cin(x, s) = lub { Cout(x, p) such that p is a predecessor of s }.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 52

Termination

• Simply saying “repeat until nothing changes” doesn’t guarantee that
eventually nothing changes.

• But the use of lub explains why the algorithm terminates:

– Values start as # and only increase

– By the structure of the lattice, therefore, each value can only
change twice.

• Thus the algorithm is linear in program size. The number of steps

= 2× Number of Cin and Cout values computed

= 4× Number of program statements.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 53

Liveness Analysis

Once constants have been globally propagated, we would like to elimi-
nate dead code

X := 3

B > 0

X = *

X = 3

X = 3

Y := Z + W
X = 3

X = 3
Y := 0

X = 3

X = 3

A := 2 * X

A < B

X = 3

X = 3

X = 3

After constant propagation, X := 3 is dead code (assuming this is the
entire CFG)
Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 54

Terminology: Live and Dead

• In the program

X := 3; /*(1)*/ X = 4; /*(2)*/ Y := X /*(3)*/

• the variable X is dead (never used) at point (1), live at point (2), and
may or may not be live at point (3), depending on the rest of the
program.

• More generally, a variable x is live at statement s if

– There exists a statement s’ that uses x;

– There is a path from s to s’; and

– That path has no intervening assignment to x

• A statement x := ... is dead code (and may be deleted) if x is
dead after the assignment.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 55

Computing Liveness

• We can express liveness as a function of information transferred
between adjacent statements, just as in copy propagation

• Liveness is simpler than constant propagation, since it is a boolean
property (true or false).

• That is, the lattice has two values, with false<true.

• It also differs in that liveness depends on what comes after a state-
ment, not before—we propagate information backwards through the
flow graph, from Lout (liveness information at the end of a stat-
ment) to Lin.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 56

Liveness Rule 1

s1
L(X) = ?

s2
L(X) = ?

s3
L(X) = true

· · ·
sn

L(X) = ?

p
L(X) = true

• So

Lout(x, p) = lub { Lin(x, s) such that p is a predecessor of s }.

• Here, least upper bound (lub) is the same as “or”.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 57

Liveness Rule 2

. . . := . . . X . . .
L(X) = true

L(X) = ?

Lin(X, s) = true if s uses the previous value of X.

• The same rule applies to any other statement that uses the value of
X, such as tests (e.g., X < 0).

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 58

Liveness Rule 3

X := e
L(X) = false

L(X) = ?

Lin(X, X := e) = false if e does not use the previous value of X.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 59

Liveness Rule 4

s
L(X) = α

L(X) = α

Lout(X, s) = Lin(X, s) if s does not mention X.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 60

Propagation Algorithm for Liveness

• Initially, let all Lin and Lout values be false.

• Set Lout value at the program exit to true iff x is going to be used
elsewhere (e.g., if it is global and we are analyzing only one proce-
dure).

• As before, repeatedly pick s where one of 1–4 does not hold and
update using the appropriate rule, until there are no more violations.

• When we’re done, we can eliminate assignments to X if X is dead at
the point after the assignment.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 61

Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false

L(X) = false

Y := Z + W

L(X) = false

L(X) = false

Y := 0
L(X) = false

L(X) = false

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false
L(X) = false
L(X) = false
L(X) = false
L(X) = false

L(X) = false

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 62

Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false

L(X) = false

Y := Z + W

L(X) = false

L(X) = false

Y := 0
L(X) = false

L(X) = false

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false true
L(X) = false true
L(X) = false
L(X) = false
L(X) = false

L(X) = false

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 62

Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false

L(X) = false

Y := Z + W

L(X) = false true

L(X) = false true

Y := 0
L(X) = false true

L(X) = false true

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false true
L(X) = false true
L(X) = false
L(X) = false
L(X) = false

L(X) = false

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 62

Example of Liveness Computation

X := 3

B > 0

L(X) = false

L(X) = false true

L(X) = false true

Y := Z + W

L(X) = false true

L(X) = false true

Y := 0
L(X) = false true

L(X) = false true

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false true
L(X) = false true
L(X) = false
L(X) = false true
L(X) = false true

L(X) = false

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 62

Termination

• As before, a value can only change a bounded number of times: the
bound being 1 in this case.

• Termination is guaranteed

• Once the analysis is computed, it is simple to eliminate dead code,
but having done so, we must recompute the liveness information.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 63

SSA and Global Analysis

• For local optimizations, the single static assignment (SSA) form was
useful.

• But applying it to a full CFG is requires a trick.

• E.g., how do we avoid two assignments to the temporary holding x

after this conditional?

if a > b:

x = a

else:

x = b

where is x at this point?

• Answer: a small kludge known as φ “functions”

• Turn the previous example into this:

if a > b:

x1 = a

else:

x2 = b

x3 = φ(x1, x2)

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 64

φ Functions

• An artificial device to allow SSA notation in CFGs.

• In a basic block, each variable is associated with one definition,

• φ functions in effect associate each variable with a set of possible
definitions.

• In general, one tries to introduce them in strategic places so as to
minimize the total number of φs.

• Although this device increases number of assignments in IL, regis-
ter allocation can remove many by assigning related IL registers to
the same real register.

• Their use enables us to extend such optimizations as CSE elimination
in basic blocks to Global CSE Elimination.

• With SSA form, easy to tell (conservatively) if two IL assignments
compute the same value: just see if they have the same right-hand
side. The same variables indicate the same values.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 65

Loops

• In a CFG, a loop is simply a set of basic blocks, L, containing an entry
block, e, such that

– All paths from the entry node of the entire CFG to a block in L

include e;

– All predecessors of a node in L are also in L (except for e, which
must have a predecessor outside L).

– Every node in L has a path in L back to e.

• Here, for example,

j = i+1;

while (j < N)

A[j] = A[j] / A[i]

The entry node contains the test j < n and the rest of the loop is
the node containing the assigment to A[j], which then loops back to
the entry.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 66

Invariant Code Motion

• Consider the loop

while (i < N)

A[i] = A[i] + j * x;

• Since j * x does not change in the loop, we can rewrite this as

tmp = j * x;

while (i < N)

A[i] = A[i] + tmp;

• This is an example of invariant code motion out of a loop.

• What tells us that j*x does not change?

• We see that all assignments to j and x that apply at the point where
the product is computed are outside the loop.

• And this we can get by observing where the assignments to the SSA-
form for those variables are.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 67

Code Motion Caveat

• Code motion is not always appropriate.

• If the code to be moved, has side effects, or might cause an excep-
tion, could change the results.

• If the code is expensive, you will increase the time required for the
program when the loop is not executed.

• Hence, you will see compilers rewrite loops like this:

if (i < N) {

/* Preheader */

while (i < N)

A[i] = A[i] + j * x;

}

where Preheader marks a spot where the compiler can insert a new
block to hold code moved out of the loop.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 68

Summary

• We’ve seen two kinds of analysis:

– Constant propagation is a forward analysis: information is pushed
from inputs to outputs.

– Liveness is a backwards analysis: information is pushed from out-
puts back towards inputs.

• But both make use of essentially the same algorithm.

• Numerous other analyses fall into these categories, and allow us to
use a similar formulation:

– An abstract domain (abstract relative to actual values);

– Local rules relating information between consecutive program points
around a single statement; and

– Lattice operations like least upper bound (or join) or greatest
lower bound (or meet) to relate inputs and outputs of adjoining
statements.

Last modified: Tue Apr 23 15:04:21 2019 CS164: Lecture #36 69

	Lecture 36: Code Optimization
	Introduction to Code Optimization
	Basic Blocks
	Basic-Block Example
	Control-Flow Graphs (CFGs)
	Control-Flow Graphs: Example
	Optimization Overview
	A Classification of Optimizations
	Local Optimizations: Algebraic Simplification
	Local Optimization: Constant Folding
	Global Optimization: Unreachable code elimination
	Single Assignment Form
	Common SubExpression (CSE) Elimination in Basic Blocks
	Copy Propagation
	Another Example of Copy Propagation and Constant Folding
	Dead Code Elimination
	Applying Local Optimizations
	An Example: Initial Code
	Example (II): Applying Algebraic Simplification
	Example (III): Using Copy Propagation
	Example (IV): Using Constant Folding
	Example (V): Performing Common Subexpression Elimination
	Example (VI): Using Copy Propagation (II)
	Example (VII): Using Dead Code Elimination
	Peephole Optimizations on Assembly Code
	Peephole optimization examples:
	Problems:
	Problems (II):
	Global Optimization
	A Simple Example: Copy Propagation
	Issues
	Undecidability of Program Properties
	Conservative Program Analyses
	Example: Global Constant Propagation
	Example of Result of Constant Propagation
	Using Analysis Results
	Transfer Functions
	Constant Propagation: Rule 1
	Constant Propagation: Rule 2
	Constant Propagation: Rule 3
	Constant Propagation: Rule 4
	Constant Propagation: Computing Cout
	Constant Propagation: Rule 5
	Constant Propagation: Rule 6
	Constant Propagation: Rule 7
	Constant Propagation: Rule 8
	Propagation Algorithm
	An Example of the Algorithm
	Another Example of the Propagation Algorithm
	A Third Example
	Comments
	Ordering the Abstract Domain
	Termination
	Liveness Analysis
	Terminology: Live and Dead
	Computing Liveness
	Liveness Rule 1
	Liveness Rule 2
	Liveness Rule 3
	Liveness Rule 4
	Propagation Algorithm for Liveness
	Example of Liveness Computation
	Termination
	SSA and Global Analysis
	 Functions
	Loops
	Invariant Code Motion
	Code Motion Caveat
	Summary

