Lecture 35: IL for Arrays

Last modified: Mon Apr 22 19:14:11 2019

One-dimensional Arrays

- \bullet How do we process retrieval from and assignment to x[i], for an array x?
- We assume that all items of the array have fixed size—5 bytes—
 and are arranged sequentially in memory (the usual representation).
- \bullet Easy to see that the address of x[i] must be

$$\&x + S \cdot i,$$

where &x is intended to denote the address of the beginning of x.

- Generically, we call such formulae for getting an element of a data structure access algorithms.
- The IL might look like this:

```
t_0 = \text{cgen(\&A[E], } t_0):
t_1 = \text{cgen(\&A)}
t_2 = \text{cgen(E)}
\Rightarrow t_3 := t_2 * S
\Rightarrow t_0 := t_1 + t_3
```

Multi-dimensional Arrays

- A 2D array is a 1D array of 1D arrays.
- Java uses arrays of pointers to arrays for >1D arrays.
- But if row size constant, for faster access and compactness, may prefer to represent an MxN array as a 1D array of M 1D rows of length N (not pointers to rows): row-major order...
- ullet Or, as in FORTRAN, a 1D array of N 1D columns of length M: column-major order.
- So apply the formula for 1D arrays repeatedly—first to compute the beginning of a row and then to compute the column within that row:

$$\&A[i][j] = \&A + i \cdot S \cdot N + j \cdot S$$

for an M-row by N-column array stored in column-major order.

 Where does this come from? Assuming S, again, is the size of an individual element, the size of a row of N elements will be $S \cdot N$.

IL for $M \times N$ 2D array

```
t = cgen(\&e1[e2,e3]):
    # Compute e1, e2, e3, and N:
    t1 = cgen(e1);
    t2 = cgen(e2);
    t3 = cgen(e3)
    t4 = cgen(N) # (N need not be constant)
    \Rightarrow t5 := t4 * t2
    \Rightarrow t6 := t5 + t3
    \Rightarrow t7 := t6 * S
    \Rightarrow t := t7 + t1
    return t
```

Array Descriptors

• Calculation of element address &e1[e2,e3] has the form

$$VO + 51 \times e2 + 52 \times e3$$

, where

- VO (&e1[0,0]) is the *virtual origin*.
- S1 and S2 are strides.
- All three of these are constant throughout the lifetime of the array (assuming arrays of constant size).
- Therefore, we can package these up into an array descriptor, which can be passed in lieu of a pointer to the array itself, as a kind of "fat pointer" to the array:

&e1[0][0] $S imes N$ S	&e1[0][0]	$\mathtt{S}\!\times\!\mathtt{N}$	S
--------------------------	-----------	----------------------------------	---

Array Descriptors (II)

 Assuming that e1 now evaluates to the address of a 2D array descriptor, the IL code becomes:

```
t = cgen(\&e1[e2,e3]):
    t1 = cgen(e1); # Yields a pointer to a descriptor.
    t2 = cgen(e2;
    t3 = cgen(e3)
    \Rightarrow t4 := *t1;  # The VO
    \Rightarrow t5 := *(t1+4) # Stride #1
    \Rightarrow t6 := *(t1+8) # Stride #2
    \Rightarrow t7 := t5 * t2
    \Rightarrow t8 := t6 * t3
    \Rightarrow t9 := t4 + t7
     \Rightarrow t10:= t9 + t8
```

(Here, we assume 32-bit quantities. Adjust the constants appropriately for 64-bit pointers and/or integers.)

Array Descriptors (III)

- By judicious choice of descriptor values, can make the same formula work for different kinds of array.
- For example, if lower bounds of indices are 1 rather than 0, must compute address

&e[1,1] + S1
$$\times$$
 (e2-1) + S2 \times (e3-1)

But some algebra puts this into the form

VO' + S1
$$\times$$
 e2 + S2 \times e3

where

$$VO' = \&e[1,1] - S1 - S2 = \&e[0,0]$$
 (if it existed).

So with the descriptor

VO', S×N S

we can use the same code as on the last slide.

 By passing descriptors as array parameters, we can have functions that adapt to many different array layouts automatically.

Other Uses for Descriptors

- No reason to stop with strides and virtual origins: can include other data.
- By adding upper and lower index bounds to a descriptor, can easily implement bounds checking.
- This also allows for runtime queries of array sizes and bounds.
- Descriptors also allow views of arrays: nothing prevents multiple descriptors from pointing to the same data.
- This allows effects such as slicing, array reversal, or array transposition without copying data.

Examples

Consider a simple base array (in C):

```
int data[12] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };
and descriptor types (including lengths):
   struct Desc1 { int* V0, int S1, int len1 };
   struct Desc2 { int* V0, int S1, int len1, int S2, int len2 };
```

• Here are some views:

```
Desc1 v0 = { data, 4, 12 }; /* All of data. */
Desc1 v1 = { &data[3], 4, 3 }; /* data[3:6]: [4, 5, 6]. */
/* Every other element of data: [1, 3, ...] */
Desc1 v2 = { data, 8, 6 };
Desc1 v3 = { &data[11], -4, 12 }; /* Reversed: [12, 11, ...] */
/* As a 2D 4x3 array: [ [ 1, 2, 3 ], [ 4, 5, 6 ], ... ] */
Desc2 v4 = { data, 12, 4, 4, 3 };
/* As row 2 of v4: [7, 8, 9] */
Desc1 v5 = { &data[6], 4, 3 }
```

Caveats

- Unfortunately, TANSTAAFL (There Ain't No Such Thing As A Free Lunch):
- Use of descriptors is nifty, but it costs:
 - For 1-D arrays, multiplication by a stride can be somewhat faster if the stride is known and is a power of 2 than when the stride is unknown due to difference in cost of multiplication vs. shift.
 - Fetching the VO from memory can also cost cycles relative to computing address of array on the stack or in static memory.
 - And fetching strides from memory is more expensive than using immediates.
 - Also, when stride is unknown can be hard to use vectorizing operations.