
Lecture 35: IL for Arrays

Last modified: Mon Apr 22 19:14:11 2019 CS164: Lecture #35 1

One-dimensional Arrays

• How do we process retrieval from and assignment to x[i], for an
array x?

• We assume that all items of the array have fixed size—S bytes—
and are arranged sequentially in memory (the usual representation).

• Easy to see that the address of x[i] must be

&x + S · i,

where &x is intended to denote the address of the beginning of x.

• Generically, we call such formulae for getting an element of a data
structure access algorithms.

• The IL might look like this:

t0 = cgen(&A[E], t0):

t1 = cgen(&A)

t2 = cgen(E)

⇒ t3 := t2 * S

⇒ t0 := t1 + t3

Last modified: Mon Apr 22 19:14:11 2019 CS164: Lecture #35 2

Multi-dimensional Arrays

• A 2D array is a 1D array of 1D arrays.

• Java uses arrays of pointers to arrays for >1D arrays.

• But if row size constant, for faster access and compactness, may
prefer to represent an MxN array as a 1D array of M 1D rows of
length N (not pointers to rows): row-major order. . .

• Or, as in FORTRAN, a 1D array of N 1D columns of length M :
column-major order.

• So apply the formula for 1D arrays repeatedly—first to compute the
beginning of a row and then to compute the column within that row:

&A[i][j] = &A + i · S ·N + j · S

for an M-row by N-column array stored in column-major order.

• Where does this come from? Assuming S, again, is the size of an
individual element, the size of a row of N elements will be S ·N .

Last modified: Mon Apr 22 19:14:11 2019 CS164: Lecture #35 3

IL for M ×N 2D array

t = cgen(&e1[e2,e3]):

Compute e1, e2, e3, and N:

t1 = cgen(e1);

t2 = cgen(e2);

t3 = cgen(e3)

t4 = cgen(N) # (N need not be constant)

⇒ t5 := t4 * t2

⇒ t6 := t5 + t3

⇒ t7 := t6 * S

⇒ t := t7 + t1

return t

Last modified: Mon Apr 22 19:14:11 2019 CS164: Lecture #35 4

Array Descriptors

• Calculation of element address &e1[e2,e3] has the form

VO + S1 × e2 +S2 × e3

, where

– VO (&e1[0,0]) is the virtual origin.

– S1 and S2 are strides.

– All three of these are constant throughout the lifetime of the
array (assuming arrays of constant size).

• Therefore, we can package these up into an array descriptor, which
can be passed in lieu of a pointer to the array itself, as a kind of
“fat pointer” to the array:

&e1[0][0] S×N S

Last modified: Mon Apr 22 19:14:11 2019 CS164: Lecture #35 5

Array Descriptors (II)

• Assuming that e1 now evaluates to the address of a 2D array de-
scriptor, the IL code becomes:

t = cgen(&e1[e2,e3]):

t1 = cgen(e1); # Yields a pointer to a descriptor.

t2 = cgen(e2;

t3 = cgen(e3)

⇒ t4 := *t1; # The VO

⇒ t5 := *(t1+4) # Stride #1

⇒ t6 := *(t1+8) # Stride #2

⇒ t7 := t5 * t2

⇒ t8 := t6 * t3

⇒ t9 := t4 + t7

⇒ t10:= t9 + t8

(Here, we assume 32-bit quantities. Adjust the constants appropri-
ately for 64-bit pointers and/or integers.)

Last modified: Mon Apr 22 19:14:11 2019 CS164: Lecture #35 6

Array Descriptors (III)

• By judicious choice of descriptor values, can make the same formula
work for different kinds of array.

• For example, if lower bounds of indices are 1 rather than 0, must
compute address

&e[1,1] + S1 × (e2-1) + S2 × (e3-1)

• But some algebra puts this into the form

VO’ + S1 × e2 + S2 × e3

where

VO’ = &e[1,1] - S1 - S2 = &e[0,0] (if it existed).

• So with the descriptor

VO’ S×N S

we can use the same code as on the last slide.

• By passing descriptors as array parameters, we can have functions
that adapt to many different array layouts automatically.

Last modified: Mon Apr 22 19:14:11 2019 CS164: Lecture #35 7

Other Uses for Descriptors

• No reason to stop with strides and virtual origins: can include other
data.

• By adding upper and lower index bounds to a descriptor, can easily
implement bounds checking.

• This also allows for runtime queries of array sizes and bounds.

• Descriptors also allow views of arrays: nothing prevents multiple
descriptors from pointing to the same data.

• This allows effects such as slicing, array reversal, or array transpo-
sition without copying data.

Last modified: Mon Apr 22 19:14:11 2019 CS164: Lecture #35 8

Examples

• Consider a simple base array (in C):

int data[12] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

and descriptor types (including lengths):

struct Desc1 { int* VO, int S1, int len1 };

struct Desc2 { int* VO, int S1, int len1, int S2, int len2 };

• Here are some views:

Desc1 v0 = { data, 4, 12 }; /* All of data. */

Desc1 v1 = { &data[3], 4, 3 }; /* data[3:6]: [4, 5, 6]. */

/* Every other element of data: [1, 3, ...] */

Desc1 v2 = { data, 8, 6 };

Desc1 v3 = { &data[11], -4, 12 }; /* Reversed: [12, 11, ...] */

/* As a 2D 4x3 array: [[1, 2, 3], [4, 5, 6], ...] */

Desc2 v4 = { data, 12, 4, 4, 3 };

/* As row 2 of v4: [7, 8, 9] */

Desc1 v5 = { &data[6], 4, 3 }

Last modified: Mon Apr 22 19:14:11 2019 CS164: Lecture #35 9

Caveats

• Unfortunately, TANSTAAFL (There Ain’t No Such Thing As A Free
Lunch):

• Use of descriptors is nifty, but it costs:

– For 1-D arrays, multiplication by a stride can be somewhat faster
if the stride is known and is a power of 2 than when the stride is
unknown due to differencec in cost of multiplication vs. shift.

– Fetching the VO from memory can also cost cycles relative to
computing address of array on the stack or in static memory.

– And fetching strides from memory is more expensive than using
immediates.

– Also, when stride is unknown can be hard to use vectorizing oper-
ations.

Last modified: Mon Apr 22 19:14:11 2019 CS164: Lecture #35 10

	Lecture 35: IL for Arrays
	One-dimensional Arrays
	Multi-dimensional Arrays
	IL for MN 2D array
	Array Descriptors
	Array Descriptors (II)
	Array Descriptors (III)
	Other Uses for Descriptors
	Examples
	Caveats

