Lecture 35: IL for Arrays

Multi-dimensional Arrays

- A 2D array is a 1 D array of 1 D arrays.
- Java uses arrays of pointers to arrays for $>1 \mathrm{D}$ arrays.
- But if row size constant, for faster access and compactness, may prefer to represent an $M \times N$ array as a 1 D array of $M 1 \mathrm{D}$ rows of length N (not pointers to rows): row-major order...
- Or, as in FORTRAN, a 1D array of N 1D columns of length M : column-major order.
- So apply the formula for 1D arrays repeatedly-first to compute the beginning of a row and then to compute the column within that row:

$$
\& A[i][j]=\& A+i \cdot S \cdot N+j \cdot S
$$

for an M-row by N-column array stored in column-major order.

- Where does this come from? Assuming S, again, is the size of an individual element, the size of a row of N elements will be $S \cdot N$.

One-dimensional Arrays

- How do we process retrieval from and assignment to $x[i]$, for an array x?
- We assume that all items of the array have fixed size-S bytesand are arranged sequentially in memory (the usual representation).
- Easy to see that the address of $\mathrm{x}[\mathrm{i}]$ must be

$$
\& x+S \cdot i
$$

where $\& x$ is intended to denote the address of the beginning of x .

- Generically, we call such formulae for getting an element of a data structure access algorithms.
- The IL might look like this:

$$
\begin{aligned}
t_{0}= & \operatorname{cgen}\left(\& \mathrm{~A}[\mathrm{E}], t_{0}\right): \\
& t_{1}=\operatorname{cgen}(\& \mathrm{~A}) \\
& t_{2}=\operatorname{cgen}(\mathrm{E}) \\
& \Rightarrow t_{3}:=t_{2} * \mathrm{~S} \\
& \Rightarrow t_{0}:=t_{1}+t_{3}
\end{aligned}
$$

Last modified: Mon Apr 22 19:14:11 2019

IL for $M \times N$ 2D array

```
t = cgen(&e1[e2,e3]):
    # Compute e1, e2, e3, and N:
    t1 = cgen(e1);
    t2 = cgen(e2);
    t3 = cgen(e3)
    t4 = cgen(N) # (N need not be constant)
    # t5 := t4 * t2
    # t6 := t5 + t3
    t7 := t6 * S
    t := t7 + t1
    return t
```


Array Descriptors

- Calculation of element address \&e1 [e2, e3] has the form

$$
V O+S 1 \times e 2+S 2 \times e 3
$$

, where

- VO (\&e1 $[0,0])$ is the virtual origin.
- S1 and S2 are strides.
- All three of these are constant throughout the lifetime of the array (assuming arrays of constant size).
- Therefore, we can package these up into an array descriptor, which can be passed in lieu of a pointer to the array itself, as a kind of "fat pointer" to the array:

$$
\begin{array}{|l|c|c|}
\hline \& \in 1[0][0] & S \times N & S \\
\hline
\end{array}
$$

Array Descriptors (III)

- By judicious choice of descriptor values, can make the same formula work for different kinds of array.
- For example, if lower bounds of indices are 1 rather than 0, must compute address

$$
\& e[1,1]+S 1 \times(e 2-1)+S 2 \times(e 3-1)
$$

- But some algebra puts this into the form

$$
V^{\prime}+\mathrm{S} 1 \times \mathrm{e} 2+\mathrm{S} 2 \times \mathrm{e} 3
$$

where

$$
\mathrm{VO}{ }^{\prime}=\& e[1,1]-\mathrm{S} 1-\mathrm{S} 2=\& e[0,0] \text { (if it existed). }
$$

- So with the descriptor

$$
\begin{array}{|c|c|c|}
\hline \text { VO' } & \mathrm{S} \times \mathrm{N} & \mathrm{~S} \\
\hline
\end{array}
$$

we can use the same code as on the last slide.

- By passing descriptors as array parameters, we can have functions that adapt to many different array layouts automatically.

Array Descriptors (II)

- Assuming that e1 now evaluates to the address of a 2D array descriptor, the IL code becomes:

```
t = cgen(&e1[e2,e3]):
    t1 = cgen(e1); # Yields a pointer to a descriptor.
    t2 = cgen(e2;
    t3 = cgen(e3)
    t4 := *t1; # The VO
    # t5 := *(t1+4) # Stride #1
    => t6 := *(t1+8) # Stride #2
    # t7 := t5 * t2
    t8 := t6 * t3
    t9 := t4 + t7
    t10:= t9 + t8
```

(Here, we assume 32-bit quantities. Adjust the constants appropriately for 64-bit pointers and/or integers.)

Other Uses for Descriptors

- No reason to stop with strides and virtual origins: can include other data.
- By adding upper and lower index bounds to a descriptor, can easily implement bounds checking.
- This also allows for runtime queries of array sizes and bounds.
- Descriptors also allow views of arrays: nothing prevents multiple descriptors from pointing to the same data.
- This allows effects such as slicing, array reversal, or array transposition without copying data.

Examples

- Consider a simple base array (in C):
int data[12] $=\{1,2,3,4,5,6,7,8,9,10,11,12\} ;$ and descriptor types (including lengths):

```
struct Desc1 { int* VO, int S1, int len1 };
struct Desc2 { int* VO, int S1, int len1, int S2, int len2 };
```

- Here are some views:

```
Desc1 v0 = { data, 4, 12 }; /* All of data. */
Desc1 v1 = { &data[3], 4, 3 }; /* data[3:6]: [4, 5, 6]. */
/* Every other element of data: [1, 3, ...] */
Desc1 v2 = { data, 8, 6 };
Desc1 v3 = { &data[11], -4, 12 }; /* Reversed: [12, 11, ...] */
/* As a 2D 4x3 array: [ [ 1, 2, 3 ], [ 4, 5, 6 ], ... ] */
Desc2 v4 = { data, 12, 4, 4, 3 };
/* As row 2 of v4: [7, 8, 9] */
Desc1 v5 = { &data[6], 4, 3 }
```


Caveats

- Unfortunately, TANSTAAFL (There Ain't No Such Thing As A Free Lunch):
- Use of descriptors is nifty, but it costs:
- For 1-D arrays, multiplication by a stride can be somewhat faster if the stride is known and is a power of 2 than when the stride is unknown due to differencec in cost of multiplication vs. shift.
- Fetching the VO from memory can also cost cycles relative to computing address of array on the stack or in static memory.
- And fetching strides from memory is more expensive than using immediates.
- Also, when stride is unknown can be hard to use vectorizing operations.

