
Lecture 34: Registers, Functions, Parameters

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 1

Some Comments About the RISC V ABI

• An Application Binary Interface (ABI) is a set of low-level conven-
tions describing how modules in a program communicate at the level
of machine code such as register use, calling conventions, data align-
ment, and system calls.

• For the purposes of project 3, we will depart in a few ways from the
standard conventions used for RV32IM installations:

– In the standard convention, the first 8 arguments to a function
are passed in registers a0–a7 (x10–x17), either directly (if they
fit in 32 bits) or by reference. Later arguments are placed on
the stack.

– In our conventions, all parameters are on the stack, with the last
argument on top. We don’t have to deal with quantities larger
than 32 bits.

– In the standard convention, the stack pointer is always aligned on
a 16-byte boundary. This helps when data types require proper
alignment in memory for correctness or performance.

– We don’t use that convention, although the reference compiler
happens to abide by it.

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 2

Converting Three-Address Code to RV32 Code

• The problem is that in reality, the RV architecture has fewer physi-
cal registers than our three-address code generator from last time
typically allocates as virtual registers.

• Register allocation is the general term for assigning virtual regis-
ters to real registers or memory locations.

• When we run out of real registers, we spill values into memory loca-
tions reserved for them.

• We keep a register or two around as compiler temporaries for cases
where the instruction set doesn’t let us just combine operands di-
rectly.

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 3

A Simple Strategy: Local Register Allocation

• It’s convenient to handle register allocation within basic blocks—
sequences of code with one entry point at the top and any branches
at the very end.

• At the end of each such block, spill any registers whose values are
needed in other basic blocks.

• To do this efficiently, need to know when a register is dead—that
is, when its value is no longer needed. We say that a register dies
in an instruction that uses its value if no other instruction will use
that value before another value is assigned.

• We’ll talk about how to compute that in a later lecture. Let’s assume
we know it for now.

• Let’s also assume that each virtual register representing a local vari-
able or intermediate result has a memory location reserved for it on
the stack suitable for spilling.

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 4

Simple Algorithm for Local Register Allocation (I)

First, we need some supporting data structures and functions:

• A set availReg of available physical (i.e. real) registers. Initially,
this contains all physical registers available for assignment. (There
may also be some “very temporary” registers around to help with
certain instructions).

• A function dies(pc) that returns the set of virtual registers that
die in the instruction at pc.

• A mapping realReg from virtual registers to the current physical
registers that hold them (if any).

• A boolean function isReg(x) that returns true iff x is a virtual reg-
ister (as opposed to an immediate or missing operand).

• A function spillReg(pc) that chooses an allocatable physical regis-
ter not in availReg (that is, currently assigned to some virtual reg-
ister), generates code to write its contents to the place reserved
for that virtual register on the stack, marks the spilled virtual reg-
ister as dying at pc, returns the physical register.

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 5

Simple Algorithm for Local Register Allocation (II)

• We execute the following for each three-address instruction in a
basic block (in turn).

Allocate registers to an instruction x := y op z or x := op y

[Adopted from Aho, Sethi, Ullman]

def regAlloc(pc, x, y, z):

if realReg[x] != None or dies(x, pc):

"No new allocation needed"

elif isReg(y) and y in dies(pc):

realReg[x] = realReg[y];

elif isReg(z) and z in dies(pc):

realReg[x] = realReg[z];

elif len(availReg) != 0:

realReg[x] = availReg.pop()

else:

realReg[x] = spillReg(pc)

• After generating code for the instruction at pc,

for r in dies(pc):

if realReg[r] != realReg[x]:

availReg.add(realReg[r])

realReg[r] = None

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 6

Function Prologue and Epilogue for the RV32

• Consider a function F that needs K bytes of local variables, saved
registers, and other compiler temporary storage for expression eval-
uation.

• We’ll consider the case where we keep a frame pointer.

• Overall, the code for a function, F , looks like this:

F:

Prologue

addi sp, sp, -K # Reserve space for locals, saved regs, etc.

sw ra, K-4(sp) # Save return pointer

sw fp, K-8(sp) # Save dynamic link (caller’s frame pointer)

addi fp, sp, K # Set new frame pointer.

code for body of function, leaving value in a0

Epilog

lw ra, -4(fp) # Restore ra

lw fp, -8(fp) # Restore frame pointer

addi sp, sp, K # Pop stack

jr ra # Return (short for ’jalr x0, ra, 0’)

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 7

Code Generation for Local Variables (Review)

• We store local variables are stored on the stack (thus not at fixed
addresses).

• One possibility: access relative to the stack pointer, but

– Sometimes convenient for stack pointer to change during execu-
tion of of function, sometimes by unknown amounts.

– Debuggers, unwinders, and stack tracers would like a simple way
to compute stack-frame boundaries.

• Solution: use a frame pointer, which is constant over execution of
function.

• In our convention, the frame pointer always points to the last (lowest-
addressed) word on the stack of the caller, which holds the last
function argument (if any).

• Thus, since our words are 4 bytes long, parameter i of aK-arguement
function is at location frame pointer + 4(K − i− 1).

• The caller registers ra and fp are saved at -4(fp) and -8(fp), re-
spectively, with other saved registers, local variables, and tempo-
raries starting at -12(fp).

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 8

Accessing Non-Local Variables (Review)

• In program on left, how does f3 access x1?

• Our convention is that that functions pass static links just before
the first parameter of their callees (so that for the callee, it ends
up at frame pointer+ 4K for a K-parameter function.)

• The static link passed to f3 will be f2’s frame pointer.

def f1(x1):

def f2(x2):

def f3(x3):

... x1 ...

...

f3(12)

...

f2(9)

To access x1 in f3:

lw t0, 4(fp) # Fetch FP for f2

lw t0, 4(t0) # Fetch FP for f1

lw t0, 0(t0) # Fetch x1.

When f2 calls f3:

addi sp, sp, -8 # Allocate space for parameters

li t0, 12

sw t0, 0(sp) # Pass parameter

sw fp, 4(sp) # Pass f2’s frame to f3

jal ra, f3

addi sp, sp, 8 # Restore stack pointer

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 9

Accessing Non-Local Variables (II)

• We’ll say a function is at nesting level 0 if it is at the outer level,
and at level k + 1 if it is most immediately enclosed inside a level-k
function. Likewise, the variables, parameters, and code in a level-k
function are themselves at level k+1 (enclosed in a level-k function).

• In general, for code at nesting level n to access a variable at nesting
level m ≤ n, perform n−m loads of static links.

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 10

Calling Function-Valued Variables and Parameters

• As we’ve seen, a function value can be represented by a code address
and a static link (let’s assume code address comes first).

• So if (as an extension to our Project 3) we need to call a function
parameter:

def caller(f):

f(42)

caller could receive a pointer to a closure object containing the
code pointer and static link for f. Then the call f(42) might get
translated to:

addi sp, sp, -8 # Allocate argument list.

li t0, 42

sw t0, 0(sp)

lw t0, 0(fp) # Get address of function value f

lw t1, 4(t0) # Get static link for f

sw t1, 4(sp) # Pass to f

lw t0, 0(t0) # Get address of f’s code

jalr ra, t0, 0 # Call

addi sp, sp, 8 # Restore sp

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 11

Using Registers for Parameters

• For simplicity, we’re using the stack for everything.

• But it’s useful to see why the RISC-V architects chose an ABI in
which parameters go to registers.

Using Stack Using Registers

addi sp, sp, -8

li t0, 42 lw t0, 0(a0) # Load code for f

sw t0, 0(sp) lw a1, 4(a0) # Static link from f

lw t0, 0(fp) li a0, 42 # Param to f

lw t1, 4(t0)

sw t1, 4(sp)

lw t0, 0(t0)

jalr ra, t0, 0 jalr ra, t0, 0

addi sp, sp, 8

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 12

Avoiding Pushes and Pops

• Don’t really need to push and pop the stack as I’ve been doing. Here’s
an alternative when translating

def f(x, y):

g(x); g(y); ...

f: addi sp, sp, -8

sw ra, 4(sp)

sw fp, 0(sp)

addi fp, sp, 8

lw t0, 4(fp) # x

addi sp, sp, -4

sw t0, 0(sp)

jal ra, g

addi sp, sp, 12 # restore sp

lw t0, 0(fp) # y

addi sp, sp, -4

sw t0, 0(sp)

etc.

f: addi sp, sp, -12

sw ra, 8(sp)

sw fp, 4(sp)

addi fp, sp, 12

lw t0, 4(fp) # x

sw t0, 0(sp)

jal ra, g

lw t0, 0(fp) # y

sw t0, 0(sp)

etc.

. . . and you can continue to use the depressed stack pointer for ar-
guments on the right.

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 13

Parameter Passing Semantics: Value vs. Reference

• So far, our examples have dealt only with value parameters, which
are the only kind found in C, Java, and Python

Ignorant comments from numerous textbook authors, blog-
gers, and slovenly hackers notwithstanding [End Rant].

• Pushing a parameter’s value on the stack creates a copy that essen-
tially acts as a local variable of the called function.

• C++ (and Pascal) have reference parameters, where assignments to
the formal are assignments to the actual.

void incr(int& x) { y = 4;

x += 1; incr(y); // Now y == 5.

}

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 14

Implementation of Reference Parameters

• Implementation of reference parameters is simple:

– Push the address of the argument, not its value, and

– To fetch from or store to the parameter, do an extra indirection.

void incr(int& x) { y = 4;

x += 1; incr(y);

}

incr: # Assume y at -12(fp)

Prologue goes here li t0, 4

lw t0, 0(fp) sw t0, -12(fp)

lw t1, 0(t0) addi t0, fp, -12 # &y

addi t1, t1, 1 addi sp, sp -4

sw t1, 0(t0) sw t0, 0(sp)

Epilogue goes here jal incr

addi sp, sp, 4

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 15

Copy-in, Copy-out Parameters

• Some languages, such as Fortran and Ada, have a variation on this:
copy-in, copy-out. Like call by value, but the final value of the param-
eter is copied back to the original location of the actual parameter
after function returns.

– “Original location” because of cases like f(A[k]), where k might
change during execution of f. In that case, we want the final
value of the parameter copied back to A[k0], where k0 is the
original value of k before the call.

– Question: can you give an example where call by reference and
copy-in, copy-out give different results?

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 16

Implementation of Copy-in/Copy-out Parameters

• We can implement copy-in/copy-out as a variation of the by-reference
implementation.

void incr(int& x) { y = 4;

x += 1; etc. incr(y);

}

incr:

Prologue goes here. # Assume y at -12(fp)

Allocate local at -12(fp) for x li t0, 4

lw t0, 0(fp) sw t0, -12(fp)

lw t0, 0(t0) addi t0, fp, -12 # &y

sw t0, -12(fp) # Copy in addi sp, sp, -4

lw t0, -12(fp) sw t0, 0(sp)

addi t0, t0, 1 jal incr

sw t0, -12(fp) addi sp, sp, 4

etc. (modify -12(fp) only)

lw t0, 0(fp)

lw t1, -12(fp)

sw t1, 0(t0) # Copy out

Epilogue goes here

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 17

Parameter Passing Semantics: Call by Name

• Algol 60’s definition says that the effect of a call P (E) is as if the
body of P were substituted for the call (dynamically, so that recur-
sion works) and E were substituted for the corresponding formal
parameter in the body (changing names to avoid clashes).

• It’s a simple description that, for simple cases, is just like call by
reference:

procedure F(x) F(aVar);

integer x; becomes
begin aVar := 42;

x := 42;

end F;

• But the (unintended?) consequences were “interesting”.

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 18

Call By Name: Jensen’s Device

• Consider:

procedure DoIt (i, L, U, x, x0, E)

integer i, L, U; real x, x0, E;

begin

x := x0;

for i := L step 1 until U do

x := E;

end DoIt;

• To set y to the sum of the values in array A[1:N],

integer k;

DoIt(k, 1, N, y, 0.0, y+A[k]);

• To set z to the Nth harmonic number:

DoIt(k, 1, N, z, 0.0, z+1.0/k);

• Now how are we going to make this work?

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 19

Call By Name: Implementation

• Basic idea: Convert call-by-name parameters into parameterless func-
tions (traditionally called thunks.)

• To allow assignment, these functions can return the addresses of
their results.

• So the call

DoIt(k, 1, N, y, 0.0, y+A[k]);

becomes something like (please pardon highly illegal notation):

integer t1; real t2, t3, t4;

t2 := 1.0; t3 := 0.0;

DoIt(lambda: &k, lambda: &t2, lambda: &N, lambda: &y,

lambda: &t3, lambda: (t4 := y+A[k], &t4));

• Later languages have abandoned this particular parameter-passing
mode.

Last modified: Fri Apr 19 19:12:13 2019 CS164: Lecture #34 20

	Lecture 34: Registers, Functions, Parameters
	Some Comments About the RISC V ABI
	Converting Three-Address Code to RV32 Code
	A Simple Strategy: Local Register Allocation
	Simple Algorithm for Local Register Allocation (I)
	Simple Algorithm for Local Register Allocation (II)
	Function Prologue and Epilogue for the RV32
	Code Generation for Local Variables (Review)
	Accessing Non-Local Variables (Review)
	Accessing Non-Local Variables (II)
	Calling Function-Valued Variables and Parameters
	Using Registers for Parameters
	Avoiding Pushes and Pops
	Parameter Passing Semantics: Value vs. Reference
	Implementation of Reference Parameters
	Copy-in, Copy-out Parameters
	Implementation of Copy-in/Copy-out Parameters
	Parameter Passing Semantics: Call by Name
	Call By Name: Jensen's Device
	Call By Name: Implementation

