
Lecture #31: Code Generation

[This lecture adopted in part from notes by R. Bodik]
Updated: This version is modified from the slides in the screencast

to conform better to this year’s project, and correct a couple of typos.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 1

Intermediate Languages and Machine Languages

• From trees such as output from project #2, could produce machine
language directly.

• However, it is often convenient to first generate some kind of inter-
mediate language (IL): a “high-level machine language” for a “virtual
machine.”

• Advantages:

– Separates problem of extracting the operational meaning (the
dynamic semantics) of a program from the problem of producing
good machine code from it, because it. . .

– Gives a clean target for code generation from the AST.

– By choosing IL judiciously, we can make the conversion of IL →

machine language easier than the direct conversion of AST→ma-
chine language. Helpful when we want to target several different
architectures (e.g., gcc).

– Likewise, if we can use the same IL for multiple languages, we can
re-use the IL → machine language implementation (e.g., gcc, CIL
from Microsoft’s Common Language Infrastructure).

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 2

Stack Machines as Virtual Machines

• A simple evaluation model: instead of registers, a stack of values
for intermediate results.

• Examples: The Java Virtual Machine, the Postscript interpreter.

• Each operation (1) pops its operands from the top of the stack, (2)
computes the required operation on them, and (3) pushes the result
on the stack.

• A program to compute 7 + 5:

push 7 # Push constant 7 on stack

push 5

add # Pop two 5 and 7 from stack, add, and push result.

• Advantages

– Uniform compilation scheme: Each operation takes operands from
the same place and puts results in the same place.

– Fewer explict operands in instructions means smaller encoding of
instructions and more compact programs.

– Meshes nicely with subroutine calling conventions that push argu-
ments on stack.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 3

Stack Machine with Accumulator

• The add instruction does 3 memory operations: Two reads and one
write of the stack. The top of the stack is frequently accessed

• Idea: keep most recently computed value in a register (called the
accumulator) since register accesses are faster.

• For an operation op(e1, . . . , en):

– compute each of e1, . . . , en−1 into acc and then push on the stack;

– compute en into the accumulator;

– perform op computation, with result in acc.

– pop e1, . . . , en−1 off stack.

• The add instruction is now

acc := acc + top_of_stack

pop one item off the stack

and uses just one memory operation (popping just means adding con-
stant to stack-pointer register).

• After computing an expression the stack is as it was before com-
puting the operands.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 4

Example: Full computation of 7+5

acc := 7

push acc

acc := 5

acc := top_of_stack + acc

pop stack

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 5

Translating from AST to Stack Machine (I)

• First, it might be useful to have abstractions for our virtual machine
and its operations:

/** A virtual machine. */

public class VM {

/** Add INST to our instruction sequence. */

public void emitInst(Instruction inst);

...

}

/** Represents machine instructions in a VM. */

public class Instruction {

...

}

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 6

Translating from AST to Stack Machine (II)

• Let’s take a look at a traditional OOP approach in which code gener-
ation routines are instance methods in the AST node class.

• A simple recursive pattern usually serves for expressions.

• At the top level, our trees might have an expression-code method:

public abstract class Node {

...

/** Generate code for me, leaving my value on the stack. */

public abstract void cgen(VM machine);

/** An appropriate VM instruction to use when my operands are on

* the stack. */

abstract Instruction getInst();

...

}

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 7

Translating from AST to Stack Machine (III)

• Implementations of cgen then obey this general comment, and each
assumes that its children will as well. E.g.

public class BinaryExpr extends Node {

...

@Override

public void cgen(VM machine) {

left.cgen(machine);

right.cgen(machine);

machine.emitInst(getInst());

}

}

• It is up to the implementation of VM to decide how the stack is
represented: with all results in memory, or with the most recent in
an accumulator.

• Code for cgen need not change (example of separation of concerns ,
btw).

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 8

The ChocoPy Project Approach

• As you have seen, our projects use a different program structure.

• Functions such as cgen are grouped into analyzers.

• Not really a traditional OOP approach, but it is nice to see the op-
tions.

• Here we might write routines such as:

public class CodeGenerator extends NodeAnalyzer<Void> {

public CodeGenerator (VM machine0) {

machine = machine0;

}

...

@Override

public analyze(BinaryExpr node) {

node.left.dispatch(this);

node.right.dispatch(this);

machine.emitInst(node.dispatch(getInstAnalyzer));

/* I leave getInstAnalyzer to your imagination. */

}

}

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 9

From Stack IL to Machine Code (I)

• Eventually, we want to produce machine language.

• To do so, we essentially write another translator from stack lan-
guage to, say, RISC V.

• This can be simple (and reusable across languages).

• Sample Translation:

acc := 7 li a0, 7

push acc addi sp, sp, -4

sw a0, 0(sp)

acc := 5 li a0, 5

acc := top_of_stack + acc lw t0, 0(sp)

add a0, t0, a0

pop stack addi sp, sp, 4

• As you can see, each statement on the left has a simple translation
on the right.

• Unfortunately, there’s quite a bit of stack-pointer twiddling going
on.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 10

From Stack IL to Machine Code (II)

• An alternative is to allocate all the space needed for the stack (i.e.,
its maximum in the current function) and keep track of the stack
pointer “mentally.” (In the project, you can do either, if you choose
to use the stack abstraction.)

• Example.

Stack Previous Alternative

At start of function

addi sp, sp, -<size>

... ...

acc := 7 li a0, 7 li a0, 7

push acc addi sp, sp, -4 sw a0, 12(sp) # E.g.

sw a0, 0(sp)

acc := 5 li a0, 5 li a0, 5

acc := top_of_stack + acc lw t0, 0(sp) lw t0, 12(sp)

add a0, t0, a0 add a0, t0, t0

pop stack addi sp, sp, 4

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 11

From Stack IL to Machine Code (III)

• So if we had to use several stack slots, we’d simply adjust the im-
mediate offset we use from sp in our code.

• For example, suppose we want to translate x * (a + b):

acc := x lw a0, x

push acc sw a0, 8(sp) # For example

acc := a lw a0, a

push acc sw a0, 4(sp)

acc := b lw a0, b

acc := top_of_stack + acc lw t0, 4(sp)

add a0, t0, a0

pop stack

acc := top_of_stack * acc lw t0, 8(sp)

mul a0, t0, a0

pop stack

• (Alternatively, can use negative offsets from fp as stack offsets,
which is what the reference compiler does.)

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 12

Virtual Register Machines and Three-Address Code

• Another common kind of virtual machine has an infinite supply of
registers, each capable of holding a scalar value or address, in addi-
tion to ordinary memory.

• A common IL in this case is some form of three-address code, so
called because the typical “working” instruction has the form

target := operand1 ⊕ operand2

where there are two source “addresses,” one destination “address”
and an operation (⊕).

• Often, we require that the operands in the full three-address form
denote (virtual) registers or immediate (literal) values, similar to
the usual RISC architecture.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 13

Three-Address Code, continued

• A few other forms deal with memory and other kinds of operation:

memory_operand := register_or_immediate_operand

register_operand := register_or_immediate_operand

register_operand := memory_operand

goto label

if operand1 ≺ operand2 then goto label

param operand ; Push parameter for call.

call operand, # of parameters ; Call, put return in

; specific dedicated register

• Here, ≺ stands for some kind of comparison. Memory operands
might be labels of static locations, or indexed operands such as (in
C-like notation): *(r1+4) or *(r1+r2).

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 14

Translating from AST into Three-Address Code

• Change the cgen routine to return where it has put its result:

public abstract class Node {

...

/** Generate code to compute my value, returning the location

* of the result. */

public Operand cgen(VM machine);

}

• Where an Operand denotes some abstract place holding a value.

• Once again, we rely on our children to obey this general comment:

public class BinaryExpr extends Callable {

public Operand cgen(VM machine) {

Operand leftOp = left.cgen(machine);

Operand rightOp = right.cgen(machine);

Operand result = machine.allocateRegister();

machine.emitInst(result, getInst(), leftOp, rightOp);

return result;

}

}

• emitInst now produces three-address instructions.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 15

A Larger Example

• Consider a small language with integers and integer operations:

P: D ";" P | D

D: "def" id(ARGS) "=" E;

ARGS: id "," ARGS | id

E: int | id | "if" E1 "=" E2 "then" E3 "else" E4 "fi"

| E1 "+" E2 | E1 "-" E2 | id "(" E1,...,En ")"

• The first function definition f is the “main” routine

• Running the program on input i means computing f(i)

• Let’s continue implementing cgen (’+’ and ’-’ already done).

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 16

Simple Cases: Literals and Sequences

Conversion of D ";" P:

public class StmtList extends Node {

...

public Operand cgen(VM machine) {

for (int i = 0; i < arity(); i += 1)

stmts.get(i).cgen(machine);

}

return Operand.NoneOperand;

}

public class IntegerLiteral extends Node {

...

@Override

Operand cgen(VM machine) {

return machine.immediateOperand(value);

}

}

• NoneOperand is an Operand that contains None.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 17

Identifiers

public class Identifier : public Node {

...

Operand cgen(VM machine) {

Operand result = machine.allocateRegister();

VarInfo info = getInfoFor(name); // However you do this.

machine.emitInst(MOVE, result, info.getLocation(machine));

return result;

}

}

• That is, we assume that the VarInfo object that holds information
about this occurrence of the identifier contains enough information
to get an operand that accesses it from the VM.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 18

Calls

public class CallExpr extends Node {

...

@Override

public Operand cgen(VM machine) {

for (Node arg : args)

machine.emitInst(PARAM, arg.cgen(machine));

Operand callable = function.cgen(machine);

machine.emitInst(CALL, callable, args.arity());

return Operand.ReturnOperand;

}

}

• ReturnOperand is an abstract location where functions return their
value.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 19

Control Expressions: if (Strategy)

• Control expressions generally involve jump and conditional jump in-
structions.

• To translate

if E1 = E2 then E3 else E4 fi

we might aim to produce something that realizes the following pseu-
docode:

code to compute E1 into r1
code to compute E2 into r2
if r1 != r2 goto L1

code to compute E3 into r3
goto L2

L1:

code to compute E4 into r3
L2:

where the ri denote virtual-machine registers.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 20

Control Expressions: if (Code Generation)

public class IfExpr extends Node {

...

public Operand cgen(VM machine) {

Operand leftOp = left.cgen(machine);

Operand rightOp = right.cgen(machine);

Label elseLabel = machine.newLabel();

Label doneLabel = machine.newLabel();

machine.emitInst(IFNE, left, right, elseLabel);

Operand result = machine.allocateRegister();

machine.emitInst(MOVE, result, thenExpr.cgen(machine));

machine.emitInst(GOTO, doneLabel);

machine.placeLabel(elseLabel);

machine.emitInst(MOVE, result, elseExpr.cgen(machine));

machine.placeLabel(doneLabel);

return result;

}

}

• newLabel creates a new, undefined instruction label.

• placeLabel inserts a definition of the label in the code.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 21

Code generation for ‘def’

public class FuncDef extends Node {

...

@Override

Operand cgen(VM machine) {

machine.placeLabel(name);

machine.emitFunctionPrologue();

Operand result = statements.cgen(machine);

machine.emitInst(MOVE, Operand.ReturnOperand, result);

machine.emitFunctionEpilogue();

return Operand.NoneOperand;

}

}

• Where function prologues and epilogues are standard code sequences
for entering and leaving functions, setting frame pointers, etc.

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 22

A Sample Translation

Program for computing the Fibonacci numbers:

def fib(x) = if x = 1 then 0 else

if x = 2 then 1 else

fib(x - 1) + fib(x - 2)

Possible code generated:

f: function prologue
r1 := x L3: r5 := x

if r1 != 1 then goto L1 r6 := r5 - 1

r2 := 0 param r6

goto L2 call fib, 1

L1: r3 := x r7 := rret

if r3 != 2 then goto L3 r8 := x

r4 := 1 r9 := r8 - 2

goto L4 param r9

call fib, 1

r10 := r7 + rret

r4 := r10

L4: r2 := r4

L2: rret := r2

function epilogue

Last modified: Fri Apr 12 19:16:33 2019 CS164: Lecture #31 23

	Lecture #31: Code Generation
	Intermediate Languages and Machine Languages
	Stack Machines as Virtual Machines
	Stack Machine with Accumulator
	Example: Full computation of 7+5
	Translating from AST to Stack Machine (I)
	Translating from AST to Stack Machine (II)
	Translating from AST to Stack Machine (III)
	The ChocoPy Project Approach
	From Stack IL to Machine Code (I)
	From Stack IL to Machine Code (II)
	From Stack IL to Machine Code (III)
	Virtual Register Machines and Three-Address Code
	Three-Address Code, continued
	Translating from AST into Three-Address Code
	A Larger Example
	Simple Cases: Literals and Sequences
	Identifiers
	Calls
	Control Expressions: if (Strategy)
	Control Expressions: if (Code Generation)
	Code generation for `def'
	A Sample Translation

