Lecture \#30: Operational Semantics, Part III

Classes and Functions as Values

- Although the language does not allow programmers to treat classes as first-class values, the semantics is free to do so.
- Thus, we represent a class T with attributes a_{1}, \ldots a

$$
\operatorname{class}(T)=\left(a_{1}=e_{1}, \ldots, a_{m}=e_{m}\right)
$$

- Here, the e_{i} are either literal expressions or function definitions.
- Similarly, the semantics associates a function value with each function, even though programmers cannot manipulate functions as values:

$$
v=\left(x_{1}, \ldots, x_{n}, y_{1}=e_{1}, \ldots, y_{k}=e_{k}, b_{\text {body }}, E_{f}\right)
$$

- Here, the x_{i} are parameter names and the y_{i} are the local variables (with initializers e_{i}.)

Function Invocation

Now things get complicated:

Function Invocation: Discussion

- In the rules for evaluating local definitions:

$$
\begin{gathered}
G, E^{\prime}, S_{n} \vdash e_{1}^{\prime}: v_{1}^{\prime}, S_{n},- \\
\vdots \\
G, E^{\prime}, S_{n} \vdash e_{k}^{\prime}: v_{k}^{\prime}, S_{n},-
\end{gathered}
$$

Why does the state remain S_{n} ?

- What would happen if we changed the steps for allocating new variables to

$$
\begin{array}{cl}
G, E, S_{n} \vdash e_{1}^{\prime}: v_{1}^{\prime}, S_{n},- & \text { Evaluate Initializers } \\
\vdots \\
G, E, S_{n} \vdash e_{k}^{\prime}: v_{k}^{\prime}, S_{n},- & \\
\hline l_{x 1}, \ldots, l_{x n}, l_{y 1}, \ldots, l_{y k}=\text { newloc }\left(S_{n}, n+k\right) & \text { Allocate New Locations for } \\
E^{\prime}=E_{f}\left[l_{x 1} / x_{1}\right] \ldots\left[l_{x n} / x_{n}\right]\left[l_{y 1} / y_{1}\right] \ldots\left[l_{y k} / y_{k}\right] & \text { Parameters and Locals }
\end{array}
$$?

Function Invocation: Discussion

- In the rules for evaluating local definitions:

$$
\begin{gathered}
G, E^{\prime}, S_{n} \vdash e_{1}^{\prime}: v_{1}^{\prime}, S_{n},- \\
\vdots \\
G, E^{\prime}, S_{n} \vdash e_{k}^{\prime}: v_{k}^{\prime}, S_{n},-
\end{gathered}
$$

Why does the state remain S_{n} ? The e_{i}^{\prime} must all be literals or function definitions, whose evaluation does not change the state.

- What would happen if we changed the steps for allocating new variables to

$G, E, S_{n} \vdash e_{1}^{\prime}: v_{1}^{\prime}, S_{n},-$	
\vdots	Evaluate Initializers
$G, E, S_{n} \vdash e_{k}^{\prime}: v_{k}^{\prime}, S_{n},-$	
$l_{x 1}, \ldots, l_{x n}, l_{y 1}, \ldots, l_{y k}=n e w l o c\left(S_{n}, n+k\right)$	Allocate New Locations for
$E^{\prime}=E_{f}\left[l_{x 1} / x_{1}\right] \ldots\left[l_{x n} / x_{n}\right]\left[l_{y 1} / y_{1}\right] \ldots\left[l_{y k} / y_{k}\right]$	Parameters and Locals

Function Invocation: Discussion

- In the rules for evaluating local definitions:

$$
\begin{gathered}
G, E^{\prime}, S_{n} \vdash e_{1}^{\prime}: v_{1}^{\prime}, S_{n},- \\
\vdots \\
G, E^{\prime}, S_{n} \vdash e_{k}^{\prime}: v_{k}^{\prime}, S_{n},-
\end{gathered}
$$

Why does the state remain S_{n} ? The e_{i}^{\prime} must all be literals or function definitions, whose evaluation does not change the state.

- What would happen if we changed the steps for allocating new variables to

$G, E, S_{n} \vdash e_{1}^{\prime}: v_{1}^{\prime}, S_{n},-$	
\vdots	Evaluate Initializers
$G, E, S_{n} \vdash e_{k}^{\prime}: v_{k}^{\prime}, S_{n},-$	
$l_{x 1}, \ldots, l_{x n}, l_{y 1}, \ldots, l_{y k}=n e w l o c\left(S_{n}, n+k\right)$	Allocate New Locations for
$E^{\prime}=E_{f}\left[l_{x 1} / x_{1}\right] \ldots\left[l_{x n} / x_{n}\right]\left[l_{y 1} / y_{1}\right] \ldots\left[l_{y k} / y_{k}\right]$	Parameters and Locals

? Nothing. The effect is the same.

Function Invocation: Discussion (II)

- Consider the lines:

$$
\begin{array}{cc}
S_{0}(E(f))=\left(x_{1}, \ldots, x_{n}, y_{1}=e_{1}^{\prime}, \ldots, y_{k}=e_{k}^{\prime}, b_{b o d y}, E_{f}\right) & \text { Evaluate Function } \\
\vdots & \text { Parameters and Locals } \\
E^{\prime}=E_{f}\left[l_{x 1} / x_{1}\right] \ldots\left[l_{x n} / x_{n}\right]\left[l_{y 1} / y_{1}\right] \ldots\left[l_{y k} / y_{k}\right] & \\
\vdots & \text { Evaluate Body : } \\
G, E^{\prime}, S_{n+1} \vdash b_{b o d y}: _, S_{n+2}, R & \\
\hline G, E, S_{0} \vdash f\left(e_{1}, \ldots, e_{n}\right): R^{\prime}, S_{n+2},- & \text { [INVOKE] }
\end{array}
$$

- The environment for evaluating the body, E^{\prime}, is not an extension of E, but rather of E_{f}, the environment that is part of the function's value.
- This is in keeping with the rule you first saw in CS61A: a function value's parent frame is the one in which the function definition is evalated, not the one in which the call is evaluated.

Method Dispatching

Method dispatching, as in x.f(3), is unsurprisingly close to function invocation.

$G, E, S \vdash e_{0}: v_{0}, S_{0},-$	Evaluate Object
$v_{0}=X\left(a_{1}=l_{1}, \ldots, f=l_{f}, \ldots, a_{m}=l_{m}\right)$	Find f in Class Value
$S_{0}\left(l_{f}\right)=\left(x_{0}, x_{1}, \ldots, x_{n}, y_{1}=e_{1}^{\prime}, \ldots, y_{k}=e_{k}^{\prime}, b_{\text {body }}, E_{f}\right)$	

... Evaluate Parameters as for Function Calls...

$l_{x 0}, l_{x 1}, \ldots, l_{x n}, l_{y 1}, \ldots, l_{y k}=\operatorname{newloc}\left(S_{n}, n+k+1\right)$
$E^{\prime}=E_{f}\left[l_{x 0} / x_{0}\right] \ldots\left[l_{x n} / x_{n}\right]\left[l_{y 1} / y_{1}\right] \ldots\left[l_{y k} / y_{k}\right]$

... Evaluate Initializers for Locals as for Function Calls...

$S_{n+1}=S_{n}\left[v_{0} / l_{x 0}\right] \ldots\left[v_{n} / l_{x n}\right]\left[v_{1}^{\prime} / l_{y 1}\right] \ldots\left[v_{k}^{\prime} / l_{y k}\right]$	Assign Params. and Locals
$G, E^{\prime}, S_{n+1} \vdash b_{\text {body }}:-$, S_{n+2}, R	Evaluate Body
$R^{\prime}=\left\{\begin{array}{l} N o n e, \text { if } R \text { is }- \\ R, \text { otherwise } \end{array}\right.$	And Capture Return Value
$G, E, S \vdash e_{0} . f\left(e_{1}, \ldots, e_{n}\right): R^{\prime}, S_{n+2,-}$	[DISPATCH]

Function Definitions

- Function definitions provide values for local definitions (nested functions) and global functions.
- In the [invoke] and [dispatch] rules, these values then get assigned to the local names (denoted y_{i} in those rules).

$$
\left.\begin{array}{l}
g_{1}, \ldots, g_{L}: \text { variables declared with 'global' in } f \\
y_{1}=e_{1}, \ldots, y_{k}=e_{k}: \text { local variables and functions in } f \\
\quad E_{f}=E\left[G\left(g_{1}\right) / g_{1}\right] \ldots\left[G\left(g_{L}\right) / g_{L}\right] \\
\quad v=\left(x_{1}, \ldots, x_{n}, y_{1}=e_{1}, \ldots, y_{k}=e_{k}, b_{b o d y}, E_{f}\right) \\
\hline G, E, S \vdash \operatorname{def} f\left(x_{1}: T_{1}, \ldots, x_{n}: T_{n}\right) \llbracket->T_{0} \rrbracket ?: b: v, S,-
\end{array} \quad \text { [FUNC-METHOD-DEF] }\right] \text { ? } \quad \text { ? }
$$

- This is where we capture the parent local environment, E, in which f is defined.

Native Functions

- Certain functions are predefined (print, len, input), and do not have normal bodies.
- For these, we denote the function bodies as, e.g., native len and define special rules for these particular bodies.
- Assume that the native bodies expect a parameter named val (if they have one).
- Then we can define, e.g.,

$$
\begin{gathered}
S(E(\mathrm{val}))=v \\
\frac{v=\operatorname{int}(i) \text { or } v=\operatorname{bool}(b) \text { or } v=\operatorname{str}(n, s)}{G, E, S \vdash \text { native print }:-, S, \text { None }} \text { [PRINT] } \\
S(E(\mathrm{val}))=v \\
v=\left[l_{1}, l_{2}, \ldots, l_{n}\right] \\
n \geq 0 \\
\frac{n \geq, E, S \vdash \text { native len }:-S, \operatorname{int}(n)}{[L E N-L I S T]}
\end{gathered}
$$

and others.

Accessing Attributes of Classes

The notation from the first slide provides us with a description of a value and its attributes:

$$
\begin{gathered}
G, E, S_{0} \vdash e: v_{1}, S_{1},- \\
\frac{v_{1}=X\left(a_{1}=l_{1}, \ldots, i d=l_{i d}, \ldots, a_{m}=l_{m}\right)}{v_{2}=S_{1}\left(l_{i d}\right)}
\end{gathered}
$$

$$
\begin{gathered}
G, E, S_{0} \vdash e_{2}: v_{r}, S_{1},- \\
G, E, S_{1} \vdash e_{1}: v_{l}, S_{2},- \\
v_{l}=X\left(a_{1}=l_{1}, \ldots, i d=l_{i d}, \ldots, a_{m}=l_{m}\right) \\
S_{3}=S_{2}\left[v_{r} / l_{i d}\right]
\end{gathered}
$$

Q: In [ATTR-ASSIGN-STMT], what exactly happens when e_{1} or e_{2} have side effects?

Accessing Attributes of Classes

The notation from the first slide provides us with a description of a value and its attributes:

$$
\begin{gathered}
G, E, S_{0} \vdash e: v_{1}, S_{1},- \\
\frac{v_{1}=X\left(a_{1}=l_{1}, \ldots, i d=l_{i d}, \ldots, a_{m}=l_{m}\right)}{v_{2}=S_{1}\left(l_{i d}\right)}
\end{gathered}
$$

$$
\begin{gathered}
G, E, S_{0} \vdash e_{2}: v_{r}, S_{1},- \\
G, E, S_{1} \vdash e_{1}: v_{l}, S_{2},- \\
v_{l}=X\left(a_{1}=l_{1}, \ldots, i d=l_{i d}, \ldots, a_{m}=l_{m}\right) \\
S_{3}=S_{2}\left[v_{r} / l_{i d}\right]
\end{gathered}
$$

Q: In [ATTR-ASSIGN-STMT], what exactly happens when e_{1} or e_{2} have side effects? A: e_{2} is evaluated first, and therefore can affect the evaluation of e_{1}, but not vice-versa.

Creating Objects

$\begin{gathered} \operatorname{class}(T)=\left(a_{1}=e_{1}, \ldots, a_{m}=e_{m}\right) \\ m \geq 1 \end{gathered}$	T Must Be A Class
$l_{a 1}, \ldots, l_{\text {am }}=\operatorname{newloc}(S, m)$	Allocate Attributes
$v_{0}=T\left(a_{1}=l_{a i}, \ldots, a_{m}=l_{a m}\right)$	New Object Value
$G, G, S \vdash e_{1}: v_{1}, S$, -	
:	Evaluate Initializers in G
$\begin{gathered} G, G, S \vdash e_{m}: v_{m}, S, \mathbf{-} \\ S_{1}=S\left[v_{1} / l_{a 1}\right] \ldots\left[v_{m} / l_{a m}\right] \end{gathered}$	Initialize Attributes
$l_{\text {init }}=l_{a i}$ such that $a_{i}=$ __init__	Get __init__ method
$\begin{gathered} S_{1}\left(l_{\text {init }}\right)=\left(x_{0}, y_{1}=e_{1}^{\prime}, \ldots, y_{k}=e_{k}^{\prime}, b_{b o d y}, E_{f}\right) \\ k \geq 0 \end{gathered}$	
$\begin{gathered} l_{x 0}, l_{y 1}, \ldots, l_{y k}=\operatorname{newloc}\left(S_{1}, k+1\right) \\ E^{\prime}=E_{f}\left[l_{x 0} / x_{0}\right]\left[l_{y 1} / y_{1}\right] \ldots\left[l_{y k} / y_{k}\right] \end{gathered}$	
$G, E, S_{1} \vdash e_{1}^{\prime}: v_{1}^{\prime}, S_{1}$, -	
	Call It On v_{0}
$G, E, S_{1} \vdash e_{k}^{\prime}: v_{k}^{\prime}, S_{1},-$	
$S_{2}=S_{1}\left[v_{0} / l_{x 0}\right]\left[v_{1}^{\prime} / l_{y 1}\right] \ldots\left[v_{k}^{\prime} / l_{y k}\right]$	
$G, E^{\prime}, S_{2} \vdash b_{\text {body }}:$ -,S_{3}, -	
$G, E, S \vdash T(): v_{0}, S_{3}$ -	

Starting Things Off: Programs

We start with an initial store and environment, containing just the predefined function.
$g_{1}=e_{1}, \ldots, g_{k}=e_{k}$ are the global variable and function definitions in the program P is the sequence of statements in the program

$$
\begin{gathered}
l_{g 1}, \ldots, l_{g k}=n e w l o c\left(S_{i n i t}, k\right) \\
G=G_{i n i t}\left[l_{g 1} / g_{1}\right] \ldots\left[l_{g k} / g_{k}\right] \\
G, G, S_{i n i t} \vdash e_{1}: v_{1}, S_{i n i t},- \\
\vdots \\
G, G, \emptyset \vdash e_{k}: v_{k}, S_{i n i t},- \\
S=S_{i n i t}\left[v_{k} / l_{g 1}\right] \ldots\left[v_{k} / l_{g k}\right] \\
G, G, S \vdash P:-, S^{\prime},- \\
\emptyset, \emptyset, \emptyset \vdash P: _, S^{\prime},-
\end{gathered}
$$

Initial Store and Environment

Here, we use the native body notation from previously.

$$
\begin{gathered}
G_{\text {init }}=\emptyset\left[l_{\text {len }} / l \text { len }\right]\left[l_{\text {print }} / \text { print }\right]\left[l_{\text {input }} / \text { input }\right] \\
S_{\text {init }}\left(l_{\text {print }}\right)=(\text { val, native print }, \emptyset) \\
S_{\text {init }}\left(l_{\text {len }}\right)=(\text { val, native len, } \emptyset) \\
S_{\text {init }}\left(l_{\text {input }}\right)=(\text { native print }, \emptyset)
\end{gathered}
$$

