Lecture \#29: Operational Semantics, Part II

A Typo

- Suppose that the ChocoPy reference had this for the arithmetic rule instead (inspired by a typo there that was recently fixed):

$$
\begin{aligned}
& G, E, S \vdash e_{1}: \operatorname{int}\left(i_{1}\right), S_{1},- \\
& G, E, S \vdash e_{2}: \operatorname{int}\left(i_{2}\right), S_{1},- \\
& \quad o p \in\{+,-, *, / /, \%\} \\
& o p \in\{/ /, \%\} \Rightarrow i_{2} \neq 0 \\
& \quad v=\operatorname{int}\left(i_{1} \text { op } i_{2}\right) \\
& G, E, S \vdash e_{1} \text { op } e_{2}: v, S_{1},-
\end{aligned} \text { [ARITH] } \quad \text {, }
$$

- What would this mean?

A Typo

- Suppose that the ChocoPy reference had this for the arithmetic rule instead (inspired by a typo there that was recently fixed):

$$
\begin{aligned}
& G, E, S \vdash e_{1}: \operatorname{int}\left(i_{1}\right), S_{1},- \\
& G, E, S \vdash e_{2}: \operatorname{int}\left(i_{2}\right), S_{1},- \\
& \quad o p \in\{+,-, *, / /, \%\} \\
& o p \in\{/ /, \%\} \Rightarrow i_{2} \neq 0 \\
& \quad v=\operatorname{int}\left(i_{1} \text { op } i_{2}\right) \\
& G, E, S \vdash e_{1} \text { op } e_{2}: v, S_{1},-
\end{aligned} \text { [ARITH] } \quad \text {, }
$$

- What would this mean?
- It says that e_{1} and e_{2} must both have the same effect on the state for the rule to apply, and that they are both evaluated from the initial state. Definitely not what was intended!

Short-circuit Logical Operations

- The right operand of 'and' is supposed to be evaluated if and only if the left operand yields True.
- Easy to do this with two rules that have mutually exclusive sets of hypotheses.

$$
\begin{aligned}
& \frac{G, E, S \vdash e_{1}: \operatorname{bool}(f a l s e), S_{1,-}}{G, E, S \vdash e_{1} \text { and } e_{2}: \operatorname{bool}(f a l s e), S_{1,-}}[\text { AND-1] } \\
& \quad G, E, S \vdash e_{1}: \operatorname{bool}(\text { true }), S_{1},- \\
& \frac{G, E, S_{1} \vdash e_{2}: v, S_{2},-}{G, E, S \vdash e_{1} \text { and } e_{2}: v, S_{2,-}}[\text { AND-2] }
\end{aligned}
$$

- The AND-1 rule applies only if e_{1} evaluates to false, and AND- 2 applies only if e_{1} evaluates to true.
- See if you can figure out the analogous rules for 'or'.

Returning

- Return statements have an interesting property: they must stop execution and propogate out of their enclosing statements.
- First, the return statement itself sets the R value in our assertions to something other than _:

$$
\begin{gathered}
\frac{G, E, S \vdash e: v, S_{1},-}{G, E, S \vdash \operatorname{return} e:-, S_{1}, v}[\mathrm{RETURN}-\mathrm{E}] \\
\overline{G, E, S \vdash \text { return }:-, S, \text { None }}[\mathrm{RETURN}]
\end{gathered}
$$

- Now we have to depict their effect on the surrounding program.
- We'll start with sequences of statements.

Statement Sequences

- A statement sequence is also executed for its side-effect alone.
- First, consider the case where none of the statements returns a value:

$$
\frac{n \geq 0}{?, E, S_{0} \vdash s_{1} \backslash \mathrm{n} s_{2} \backslash \mathrm{n} \ldots s_{n} \backslash \mathrm{n}:-, ? ?, _} \quad[\text { STMT-SEQ }]
$$

(where $\backslash \mathrm{n}$ is newline.)

Statement Sequences

- A statement sequence is also executed for its side-effect alone.
- First, consider the case where none of the statements returns a value:

$$
\begin{gathered}
n \geq 0 \\
G, E, S_{0} \vdash s_{1}:-, S_{1},- \\
G, E, S_{1} \vdash s_{2}:-, S_{2},- \\
\vdots \\
\frac{G, E, S_{n-1} \vdash s_{n}:-, S_{n},-}{G, E, S_{0} \vdash s_{1} \backslash \mathrm{n} s_{2} \backslash \mathrm{n} \ldots s_{n} \backslash \mathrm{n}:-, S_{n},-} \\
{[\text { STMT-SEQ }]}
\end{gathered}
$$

(where $\backslash \mathrm{n}$ is newline.)

Statement Sequences With a Return

- But if statement k returns something, the statements starting at $k+1$ are irrelevant:

$$
\begin{gathered}
n \geq 0 \\
G, E, S_{0} \vdash s_{1}:-, S_{1},- \\
G, E, S_{1} \vdash s_{2}:-, S_{2},- \\
\vdots \\
G, E, S_{k-1} \vdash s_{k}:-, S_{k}, R \\
k \leq n, \quad R \text { is not - } \\
\frac{G, E, S_{0} \vdash s_{1} \backslash \mathrm{n} s_{2} \backslash \mathrm{n} \ldots s_{n} \backslash \mathrm{n}:-, S_{k}, R}{} \text { [STMT-SEQ-RETURN] }
\end{gathered}
$$

If Statements

- For conditional statements, can use the same trick as for 'and' and 'or': one rule for a true condition and one for false:
- We must be careful to make sure that any return values are propagated out of the statement.

$$
\begin{aligned}
& \quad G, E, S \vdash e: \text { bool (true), } S_{1},- \\
& \frac{G, E, S_{1} \vdash b_{1}:-, S_{2}, R}{G, E, S \vdash \text { if } e: b_{1} \text { else }: b_{2}:-, S_{2}, R} \text { [IF-ELSE-TRUE] } \\
& \quad G, E, S \vdash e: \text { bool }(\text { false }), S_{1},- \\
& \\
& \quad \frac{G, E, S_{1} \vdash b_{2}:-, S_{2}, R}{G, E, S \vdash \text { if } e: b_{1} \text { else: } b_{2}:-, S_{2}, R} \quad \text { [IF-ELSE-FALSE] }
\end{aligned}
$$

- The use of R above causes any return value from the true or false branch to become the return value of the entire statement.

While Statements

- Again, we can use the same trick as for if, but how to get the effect of repetition without writing an infinite sequence of nested if statements??

$$
\frac{? ?}{G, E, S \vdash \text { while } e: b: ? ?} \quad[\text { WHILE }]
$$

While Statements

- Ans: The while is really (tail-)recursive, so start with a base case:

$$
\frac{G, E, S \vdash e: ? ?}{G, E, S \vdash \text { while } e: ? ?} \quad[\text { WHILE-1] }
$$

While Statements

- The while is really (tail-)recursive, so start with a base case:

$$
\frac{G, E, S \vdash e: \operatorname{bool}(f a l s e), S_{1},-}{G, E, S \vdash \text { while } e: b:-, S_{1},-} \quad[\text { while-false }]
$$

- And then the inductive case:

While Statements

- The while is really (tail-)recursive, so start with a base case:

$$
\frac{G, E, S \vdash e: \operatorname{bool}(f a l s e), S_{1}, \boldsymbol{_}}{G, E, S \vdash \text { while } e: b: _, S_{1}, \boldsymbol{_}} \quad[\text { whiLe-FALSE }]
$$

- And then the inductive case:

$$
\begin{aligned}
& G, E, S \vdash e: \operatorname{bool}(\text { true }), S_{1},- \\
& \quad G, E, S_{1} \vdash b:-, S_{2},- \\
& \frac{G, E, S_{2} \vdash \text { while } e: b:-, S_{3}, R}{G, E, S \vdash \text { while } e: b:-, S_{3}, R} \text { [WHILE-TRUE-LOOP] }
\end{aligned}
$$

- What's missing?

While Statements

- The while is really (tail-)recursive, so start with a base case:

$$
\frac{G, E, S \vdash e: \operatorname{bool}(f a l s e), S_{1}, \boldsymbol{_}}{G, E, S \vdash \text { while } e: b: _, S_{1}, \boldsymbol{_}} \quad[\text { whiLe-FALSE }]
$$

- And then the inductive case:

$$
\begin{aligned}
& G, E, S \vdash e: \text { bool(true }), S_{1},- \\
& \quad G, E, S_{1} \vdash b:-, S_{2}, \text { - } \\
& \frac{G, E, S_{2} \vdash \text { while } e: b:-, S_{3}, R}{G, E, S \vdash \text { while } e: b:-, S_{3}, R} \quad \text { [WHILE-TRUE-LOOP] }
\end{aligned}
$$

- Ans: And finally another base case:

$$
\begin{aligned}
& G, E, S \vdash e: \operatorname{bool}(\text { true }), S_{1},- \\
& \quad G, E, S_{1} \vdash b:-, S_{2}, R \\
& \quad R \text { is not } \\
& \frac{G, E, S \vdash \text { while } e: b:-, S_{2}, R}{\text { [WHILE-TRUE-RETURN] }}
\end{aligned}
$$

Allocating Variables

- How can we describe, mathematically, the allocation of space for variables?
- Creating a new variable evidently amounts to creating a new location that is currently not used.
- So we posit a function newloc, which is supposed to return such locations. But what paramaters does it need?
- Clearly, what newloc returns must depend on what's already in the store.
- The store is a function mapping locations to values, so "what's already in the store" is the domain of the store.
- Therefore, for store S, we'll write

$$
\operatorname{newloc}(S, n) \mapsto\left(l_{1}, \ldots, l_{n}\right), l_{i} \text { distinct and } l_{i} \notin \operatorname{domain}(S)
$$

- And abbreviate newloc $(S)=\operatorname{newloc}(S, 1)$.

Example: List Displays

- We'll represent lists as sequences of locations, $\left[l_{0}, \ldots, l_{n-1}\right]$, where location l_{i} is the location containing the value of element i of the list.

$$
\begin{gathered}
n \geq 0 \\
G, E, S_{0} \vdash e_{1}: v_{1}, S_{1},- \\
G, E, S_{1} \vdash e_{2}: v_{2}, S_{2},- \\
\vdots \\
G, E, S_{n-1} \vdash e_{n}: v_{n}, S_{n},- \\
l_{1}, \ldots, l_{n}=n e w l o c\left(S_{n}, n\right) \\
v=\left[l_{1}, l_{2}, \ldots, l_{n}\right] \\
\frac{S_{n+1}=S_{n}\left[v_{1} / l_{1}\right]\left[v_{2} / l_{2}\right] \ldots\left[v_{n} / l_{n}\right]}{G, E, S_{0} \vdash\left[e_{1}, e_{2}, \ldots, e_{n}\right]: v, S_{n+1},-} \\
\text { [LIST-DISPLAY] }
\end{gathered}
$$

Operations on Lists

- Selection from and assignment to lists look like variable assignments (unsurprisingly):

$$
\begin{aligned}
& G, E, S_{0} \vdash e_{1}: v_{1}, S_{1},- \\
& G, E, S_{1} \vdash e_{2}: \operatorname{int}(i), S_{2},- \\
& v_{1}=\left[l_{1}, l_{2}, \ldots, l_{n}\right] \\
& 0 \leq i<n \\
& \frac{v_{2}=S_{2}\left(l_{i+1}\right)}{G, E, S_{0} \vdash e_{1}\left[e_{2}\right]: v_{2}, S_{2,-}} \quad[\text { LIST-SELECT }]
\end{aligned}
$$

$$
G, E, S_{0} \vdash e_{3}: v_{r}, S_{1},-
$$

$$
G, E, S_{1} \vdash e_{1}: v_{l}, S_{2},-
$$

$$
G, E, S_{2} \vdash e_{2}: \operatorname{int}(i), S_{3}-
$$

$$
v_{l}=\left[l_{1}, l_{2}, \ldots, l_{n}\right]
$$

$$
0 \leq i<n
$$

$$
\frac{S_{4}=S_{3}\left[v_{r} / l_{i+1}\right]}{G, E, S_{0} \vdash e_{1}\left[e_{2}\right]=e_{3}: \boldsymbol{_}, S_{4}, \boldsymbol{_}} \quad \text { [LIST-ASSIGN-STMT] }
$$

Operations on Lists: Concatenation

- List concatenation again requires allocation:

$$
\begin{gathered}
G, E, S_{0} \vdash e_{1}: v_{1}, S_{1}, \mathbf{} \\
G, E, S_{1} \vdash e_{2}: v_{2}, S_{2},- \\
v_{1}=\left[l_{1}, l_{2}, \ldots, l_{n}\right] \\
v_{2}=\left[l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{m}^{\prime}\right] \\
n, m \geq 0 \\
l_{1}^{\prime \prime}, \ldots, l_{m+n}^{\prime \prime}=n e w l o c\left(S_{2}, m+n\right) \\
v_{3}=\left[l_{1}^{\prime \prime}, l_{2}^{\prime \prime}, \ldots, l_{n+m}^{\prime \prime}\right] \\
\frac{S_{3}=S_{2}\left[S_{2}\left(l_{1}\right) / l_{1}^{\prime \prime}\right] \ldots\left[S_{2}\left(l_{n}\right) / l_{n}^{\prime \prime}\right]\left[S_{2}\left(l_{1}^{\prime}\right) / l_{n+1}^{\prime \prime}\right] \ldots\left[S_{2}\left(l_{m}^{\prime}\right) / l_{n+m}^{\prime \prime}\right]}{G, E, S_{0} \vdash e_{1}+e_{2}: v_{3}, S_{3},-}
\end{gathered}
$$

- Subtlety here: in $e_{1}+e_{2}$, suppose evaluating e_{2} has a side-effect on e_{1}. What value goes into the resulting list?

