
Lecture #29: Operational Semantics, Part II

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 1

A Typo

• Suppose that the ChocoPy reference had this for the arithmetic
rule instead (inspired by a typo there that was recently fixed):

G,E, S ⊢ e1 : int(i1), S1,
G,E, S ⊢ e2 : int(i2), S1,

op ∈ {+, -, *,//, %}
op ∈ {//, %} ⇒ i2 6= 0

v = int(i1 op i2)

G,E, S ⊢ e1 op e2 : v, S1,
[arith]

• What would this mean?

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 2

A Typo

• Suppose that the ChocoPy reference had this for the arithmetic
rule instead (inspired by a typo there that was recently fixed):

G,E, S ⊢ e1 : int(i1), S1,
G,E, S ⊢ e2 : int(i2), S1,

op ∈ {+, -, *,//, %}
op ∈ {//, %} ⇒ i2 6= 0

v = int(i1 op i2)

G,E, S ⊢ e1 op e2 : v, S1,
[arith]

• What would this mean?

• It says that e1 and e2 must both have the same effect on the state
for the rule to apply, and that they are both evaluated from the
initial state. Definitely not what was intended!

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 3

Short-circuit Logical Operations

• The right operand of ‘and’ is supposed to be evaluated if and only if
the left operand yields True.

• Easy to do this with two rules that have mutually exclusive sets of
hypotheses.

G,E, S ⊢ e1 : bool(false), S1,

G,E, S ⊢ e1 and e2 : bool(false), S1,
[and-1]

G,E, S ⊢ e1 : bool(true), S1,
G, E, S1 ⊢ e2 : v, S2,

G, E, S ⊢ e1 and e2 : v, S2,
[and-2]

• The and-1 rule applies only if e1 evaluates to false, and and-2 ap-
plies only if e1 evaluates to true.

• See if you can figure out the analogous rules for ‘or’.

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 4

Returning

• Return statements have an interesting property: they must stop
execution and propogate out of their enclosing statements.

• First, the return statement itself sets the R value in our assertions
to something other than :

G,E, S ⊢ e : v, S1,

G,E, S ⊢ return e : , S1, v
[return-e]

G,E, S ⊢ return : , S,None
[return]

• Now we have to depict their effect on the surrounding program.

• We’ll start with sequences of statements.

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 5

Statement Sequences

• A statement sequence is also executed for its side-effect alone.

• First, consider the case where none of the statements returns a
value:

n ≥ 0
??

G,E, S0 ⊢ s1 \n s2 \n . . . sn \n : , ??,
[stmt-seq]

(where \n is newline.)

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 6

Statement Sequences

• A statement sequence is also executed for its side-effect alone.

• First, consider the case where none of the statements returns a
value:

n ≥ 0
G,E, S0 ⊢ s1 : , S1,
G,E, S1 ⊢ s2 : , S2,

...
G,E, Sn−1 ⊢ sn : , Sn,

G, E, S0 ⊢ s1 \n s2 \n . . . sn \n : , Sn,
[stmt-seq]

(where \n is newline.)

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 7

Statement Sequences With a Return

• But if statement k returns something, the statements starting at
k + 1 are irrelevant:

n ≥ 0
G,E, S0 ⊢ s1 : , S1,
G,E, S1 ⊢ s2 : , S2,

...
G,E, Sk−1 ⊢ sk : , Sk, R
k ≤ n, R is not

G,E, S0 ⊢ s1 \n s2 \n . . . sn \n : , Sk, R
[stmt-seq-return]

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 8

If Statements

• For conditional statements, can use the same trick as for ‘and’ and
‘or’: one rule for a true condition and one for false:

• We must be careful to make sure that any return values are propa-
gated out of the statement.

G,E, S ⊢ e : bool(true), S1,
G, E, S1 ⊢ b1 : , S2, R

G,E, S ⊢ if e: b1 else: b2 : , S2, R
[if-else-true]

G,E, S ⊢ e : bool(false), S1,
G, E, S1 ⊢ b2 : , S2, R

G,E, S ⊢ if e: b1 else: b2 : , S2, R
[if-else-false]

• The use of R above causes any return value from the true or false
branch to become the return value of the entire statement.

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 9

While Statements

• Again, we can use the same trick as for if, but how to get the ef-
fect of repetition without writing an infinite sequence of nested if
statements??

??

G,E, S ⊢ while e: b : ??
[while]

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 10

While Statements

• Ans: The while is really (tail-)recursive, so start with a base case:

G,E, S ⊢ e :??

G,E, S ⊢ while e: ??
[while-1]

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 11

While Statements

• The while is really (tail-)recursive, so start with a base case:

G,E, S ⊢ e : bool(false), S1,

G, E, S ⊢ while e: b : , S1,
[while-false]

• And then the inductive case:

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 12

While Statements

• The while is really (tail-)recursive, so start with a base case:

G,E, S ⊢ e : bool(false), S1,

G, E, S ⊢ while e: b : , S1,
[while-false]

• And then the inductive case:

G,E, S ⊢ e : bool(true), S1,
G,E, S1 ⊢ b : , S2,

G, E, S2 ⊢ while e: b : , S3, R

G,E, S ⊢ while e: b : , S3, R
[while-true-loop]

• What’s missing?

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 13

While Statements

• The while is really (tail-)recursive, so start with a base case:

G,E, S ⊢ e : bool(false), S1,

G, E, S ⊢ while e: b : , S1,
[while-false]

• And then the inductive case:

G,E, S ⊢ e : bool(true), S1,
G,E, S1 ⊢ b : , S2,

G, E, S2 ⊢ while e: b : , S3, R

G,E, S ⊢ while e: b : , S3, R
[while-true-loop]

• Ans: And finally another base case:

G,E, S ⊢ e : bool(true), S1,
G,E, S1 ⊢ b : , S2, R

R is not

G,E, S ⊢ while e: b : , S2, R
[while-true-return]

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 14

Allocating Variables

• How can we describe, mathematically, the allocation of space for
variables?

• Creating a new variable evidently amounts to creating a new location
that is currently not used.

• So we posit a function newloc, which is supposed to return such
locations. But what paramaters does it need?

• Clearly, what newloc returns must depend on what’s already in the
store.

• The store is a function mapping locations to values, so “what’s al-
ready in the store” is the domain of the store.

• Therefore, for store S, we’ll write

newloc(S,n) 7→ (l1, . . . , ln), li distinct and li 6∈ domain(S)

• And abbreviate newloc(S) = newloc(S, 1).

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 15

Example: List Displays

• We’ll represent lists as sequences of locations, [l0, . . . , ln−1], where
location li is the location containing the value of element i of the
list.

n ≥ 0
G,E, S0 ⊢ e1 : v1, S1,
G, E, S1 ⊢ e2 : v2, S2,

...
G,E, Sn−1 ⊢ en : vn, Sn,
l1, . . . , ln = newloc(Sn, n)

v = [l1, l2, . . . , ln]
Sn+1 = Sn[v1/l1][v2/l2] . . . [vn/ln]

G,E, S0 ⊢ [e1, e2, . . . , en] : v, Sn+1,
[list-display]

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 16

Operations on Lists

• Selection from and assignment to lists look like variable assignments
(unsurprisingly):

G,E, S0 ⊢ e1 : v1, S1,
G,E, S1 ⊢ e2 : int(i), S2,

v1 = [l1, l2, . . . , ln]
0 ≤ i < n

v2 = S2(li+1)

G,E, S0 ⊢ e1[e2] : v2, S2,
[list-select]

G,E, S0 ⊢ e3 : vr, S1,
G,E, S1 ⊢ e1 : vl, S2,

G,E, S2 ⊢ e2 : int(i), S3,
vl = [l1, l2, . . . , ln]

0 ≤ i < n
S4 = S3[vr/li+1]

G,E, S0 ⊢ e1[e2] = e3 : , S4,
[list-assign-stmt]

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 17

Operations on Lists: Concatenation

• List concatenation again requires allocation:

G,E, S0 ⊢ e1 : v1, S1,
G, E, S1 ⊢ e2 : v2, S2,

v1 = [l1, l2, . . . , ln]
v2 = [l′1, l

′
2, . . . , l

′
m]

n,m ≥ 0
l′′1 , . . . , l

′′
m+n = newloc(S2,m + n)

v3 = [l′′1 , l
′′
2 , . . . , l

′′
n+m]

S3 = S2[S2(l1)/l
′′
1] . . . [S2(ln)/l

′′
n][S2(l

′
1)/l

′′
n+1] . . . [S2(l

′
m)/l

′′
n+m]

G,E, S0 ⊢ e1 + e2 : v3, S3,
[list-concat]

• Subtlety here: in e1 + e2, suppose evaluating e2 has a side-effect on
e1. What value goes into the resulting list?

Last modified: Mon Apr 8 16:50:16 2019 CS164: Lecture #29 18

	Lecture #29: Operational Semantics, Part II
	A Typo
	Short-circuit Logical Operations
	Returning
	Statement Sequences
	Statement Sequences With a Return
	If Statements
	While Statements
	Allocating Variables
	Example: List Displays
	Operations on Lists
	Operations on Lists: Concatenation

