Lecture #28: Operational Semantics

- For syntax, we have BNF specifications of the proper syntactic form for programs, for which we have tools.
- For static semantics, we saw type specifications of what constitutes a *meaningful* program, for which we didn't have tools, but which give a complete and concise definition of the rules.
- Now we turn to dynamic semantics—the definition of what a program does or computes when executed.
- Again, we don't really have tools as we did for syntax, but a formal definition is helpful for defining the language precisely.

Approaches

- There are number of definitional methods.
- Operational Semantics in effect defines an abstract machine and translates each statement or expression into operations on that machine. (This is the one we'll use).
- Denotational Semantics gives a way of translating a program into a mathematical function on some domain that represents the state of a program.
- Axiomatic Semantics gives a way to translate a program interspersed with assertions about the state of that program (values of variables, etc.) into a mathematical assertion whose proof will indicate the correctness of that particular program relative to the assertions.

Last modified: Fri Apr 5 17:29:37 2019	CS164: Lecture #28 1	Last modified: Fri Apr 5 17:29:37 2019	CS164: Lecture #28 2
Operational Semantic Assertions		Environments, Locations, and States	
 Similarly to what we did for static semantics, we write assertions using a notation like this: 		 Basic idea is that the store (or state) contains the current values manipulated by the program. 	
÷		 Each value resides at a particular <i>location</i> in say exactly what these are; they just come for 	1 the store. We never °om some abstract set.
$\overline{G,E,S\vdash e:v,S',R'}$		 That is, the store is a <i>function</i> mapping locations to values. 	

where

- -e is the language construct being defined,
- -G, E, S embody the *evaluation context* before execution of e:
 - * G is the global environment, mapping names to locations.
 - * E is the local environment, also mapping names to locations.
 - * S is the state (of memory or store), mapping locations to values. Locations abstractions of memory addresses.
- -v, S', R' embody the *result* of executing or evaluating e.
 - * v is value yielded by e (if any).
 - * S' is the state resulting from executing e.
 - * R' is the value returned by e (if it is a **return** statement).

- Storing into a variable in memory will correspond to replacing the state with a new one.
- Environments map identifiers or names to locations.
- So "the value of x in environment E and state S" translates to S(E(x)).
- And "the result of setting x to value v in environment E and state S" is the new state S[v/E(x)]
- (Here, we use the same notation we used for indicating a change to an environment when discussing static semantics.)
- BTW: The same idea works for defining how arrays work (using indices in place of locations), or references (using pointers in place of locations and modeling the heap as a function like the state.)

Dynamic Semantic Rules

• Now that we have semantic assertions, we can use the same sort of notation for dynamic semantic rules as for static semantic type rules:

$\frac{Hypotheses}{G,E,S\vdash E:v,S',R'}$

• Start with something really simple: pass

 $\frac{??}{G, E, S \vdash pass :_, ??, _}$ [PASS]

- For this rule, the **pass** statement yields no value and does not cause a return, so we use '_' to indicate missing pieces.
- Actually, we never really use this rule in our code for this project, since we have removed all the **pass** statements during parsing.

CS164: Lecture #28 5

Variables

- Reading (assigning) a variable involves finding its location in E and from that, yielding (modifying) its value in S' as indicated before.
- Here, the construct in question *does* produce a value (but of course, does not cause a return), and again does not change the state:

$$\label{eq:constraint} \begin{split} E(id) &= l_{id} \\ S(l_{id}) &= v \\ \overline{G, E, S \vdash id: v, S, _} \quad \text{[var-read]} \end{split}$$

• Assignment, on the other hand, produces no value, but does produce a new state:

$$\begin{array}{l} G, E, S \vdash e : v, S_1, _\\ E(id) = l_{id} \\ \hline S_2 = S_1[v/l_{id}] \\ \hline G, E, S \vdash id = e : _, S_2, _ \end{array} \ \begin{bmatrix} \text{VAR-ASSIGN-STMT} \end{bmatrix} \end{array}$$

Dynamic Semantic Rules

• Now that we have semantic assertions, we can use the same sort of notation for dynamic semantic rules as for static semantic type rules:

$$\frac{Hypotheses}{G,E,S\vdash E:v,S',R'}$$

• Start with something really simple: pass

 $\overline{G, E, S \vdash \texttt{pass} :_, S, _} \quad \begin{bmatrix} \texttt{PASS} \end{bmatrix}$

- For this rule, the **pass** statement yields no value and does not cause a return, so we use '_' to indicate missing pieces.
- Actually, we never really use this rule in our code for this project, since we have removed all the **pass** statements during parsing.

Last modified: Fri Apr 5 17:29:37 2019

CS164: Lecture #28 6

Expression Statements

• An expression used as a statement is used only for its side-effects and has no value.

$$\frac{??}{G, E, S \vdash e:_, ??,_} \quad [\text{EXPR-STMT}]$$

Expression Statements

• An expression used as a statement is used only for its side-effects and has no value.

 $\frac{G, E, S \vdash e : v, S', _}{G, E, S \vdash e : _, S', _}$ [EXPR-STMT]

effects	 For uniformity, the ChocoPy language reference treats all values as instances of classes.
	• For a type T with attributes named a_1, \ldots, a_n , a value of type T is denoted
	$T(a_1 = l_1, \ldots, a_n = l_n)$
	 That is, every class value maps the attribute names into locations in the store that hold the values of those attributes.
	 Why the indirection? Why not instead use the values of the at- tributes directly?
	 The problem that locations solve is shown by examples like this:
	<pre>class A(object): x: int = 3 anA: A = None alias: A = None anA = A() alias = anA anA.x = 4</pre>

Last modified: Fri Apr 5 17:29:37 2019

CS164: Lecture #28 9

Immutables

- The basic types int, bool, and str do not have mutable fields, so that it is unnecessary to use the indirection used for other classes.
- So the ChocoPy reference makes these special cases, and in the semantics, their values are represented instead as

int(v) # The int object representing the integer v. bool(b) # The bool object representing True/False value b str(n, s) # The str object representing the string s of length n

• Hence, we can write the rule for integer literals like this:

 $\frac{i \text{ is an integer literal}}{G, E, S \vdash i : int(i), S, _}$ [INT]

(Well, strictly speaking, this is abuse of notation. The *numeral* i, which appears in the program, is the *denotation* of the *number*—the mathematical value i, so that in the last line of the rule, i means two different things. While I personally revel in such pedantry, it is perhaps not too important to be so fussy for the purposes of this course.)

Arithmetic

- When describing operations such as e_1+e_2 , we must take into account the fact that either e_1 or e_2 might modify the program state.
- Thus giving us this rule:

Last modified: Fri Apr 5 17:29:37 2019

$$\begin{array}{l} G, E, S \vdash e_1 : int(i_1), S_1, _\\ G, E, S_1 \vdash e_2 : int(i_2), S_2, _\\ op \in \{+, -, *, //, \%\}\\ op \in \{//, \%\} \Rightarrow i_2 \neq 0\\ \hline v = int(i_1 \ op \ i_2)\\ \hline G, E, S \vdash e_1 \ op \ e_2 : v, S_2, _ \end{array}$$
[ARITH]

- There is a subtle point here: the above says that e_1 and e_2 must be evaluated in that order (why?).
- In contrast, the C language does not have this constraint, which gives compiler writers an easier time, but doesn't particularly help programmers and really complicates the formal semantics.

CS164: Lecture #28 10