
Lecture #28: Operational Semantics

• For syntax, we have BNF specifications of the proper syntactic
form for programs, for which we have tools.

• For static semantics, we saw type specifications of what constitutes
a meaningful program, for which we didn’t have tools, but which give
a complete and concise definition of the rules.

• Now we turn to dynamic semantics—the definition of what a program
does or computes when executed.

• Again, we don’t really have tools as we did for syntax, but a formal
definition is helpful for defining the language precisely.
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Approaches

• There are number of definitional methods.

• Operational Semantics in effect defines an abstract machine and
translates each statement or expression into operations on that ma-
chine. (This is the one we’ll use).

• Denotational Semantics gives a way of translating a program into a
mathematical function on some domain that represents the state of
a program.

• Axiomatic Semantics gives a way to translate a program interspersed
with assertions about the state of that program (values of variables,
etc.) into a mathematical assertion whose proof will indicate the
correctness of that particular program relative to the assertions.
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Operational Semantic Assertions

• Similarly to what we did for static semantics, we write assertions
using a notation like this:

...

G,E, S ⊢ e : v, S ′, R′

where

– e is the language construct being defined,

– G,E, S embody the evaluation context before execution of e:

∗ G is the global environment, mapping names to locations.

∗ E is the local environment, also mapping names to locations.

∗ S is the state (of memory or store), mapping locations to val-
ues. Locations abstractions of memory addresses.

– v, S ′, R′ embody the result of executing or evaluating e.

∗ v is value yielded by e (if any).

∗ S ′ is the state resulting from executing e.

∗ R′ is the value returned by e (if it is a return statement).
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Environments, Locations, and States

• Basic idea is that the store (or state) contains the current values
manipulated by the program.

• Each value resides at a particular location in the store. We never
say exactly what these are; they just come from some abstract set.

• That is, the store is a function mapping locations to values.

• Storing into a variable in memory will correspond to replacing the
state with a new one.

• Environments map identifiers or names to locations.

• So “the value of x in enviromentE and state S ” translates to S(E(x)).

• And “the result of setting x to value v in environment E and state
S ” is the new state S[v/E(x)]

• (Here, we use the same notation we used for indicating a change to
an environment when discussing static semantics.)

• BTW: The same idea works for defining how arrays work (using in-
dices in place of locations), or references (using pointers in place of
locations and modeling the heap as a function like the state.)
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Dynamic Semantic Rules

• Now that we have semantic assertions, we can use the same sort
of notation for dynamic semantic rules as for static semantic type
rules:

Hypotheses

G,E, S ⊢ E : v, S ′, R′

• Start with something really simple: pass

??

G,E, S ⊢ pass : , ?? ,
[pass]

• For this rule, the pass statement yields no value and does not cause
a return, so we use ‘ ’ to indicate missing pieces.

• Actually, we never really use this rule in our code for this project,
since we have removed all the pass statements during parsing.
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Dynamic Semantic Rules

• Now that we have semantic assertions, we can use the same sort
of notation for dynamic semantic rules as for static semantic type
rules:

Hypotheses

G,E, S ⊢ E : v, S ′, R′

• Start with something really simple: pass

G,E, S ⊢ pass : , S ,
[pass]

• For this rule, the pass statement yields no value and does not cause
a return, so we use ‘ ’ to indicate missing pieces.

• Actually, we never really use this rule in our code for this project,
since we have removed all the pass statements during parsing.

Last modified: Fri Apr 5 17:29:37 2019 CS164: Lecture #28 6

Variables

• Reading (assigning) a variable involves finding its location in E and
from that, yielding (modifying) its value in S ′ as indicated before.

• Here, the construct in question does produce a value (but of course,
does not cause a return), and again does not change the state:

E(id) = lid
S(lid) = v

G,E, S ⊢ id : v, S,
[var-read]

• Assignment, on the other hand, produces no value, but does produce
a new state:

G,E, S ⊢ e : v, S1,
E(id) = lid

S2 = S1[v/lid]

G,E, S ⊢ id = e : , S2,
[var-assign-stmt]
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Expression Statements

• An expression used as a statement is used only for its side-effects
and has no value.

??

G,E, S ⊢ e : , ??,
[expr-stmt]
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Expression Statements

• An expression used as a statement is used only for its side-effects
and has no value.

G,E, S ⊢ e : v, S ′,

G, E, S ⊢ e : , S ′,
[expr-stmt]
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A Word About Values

• For uniformity, the ChocoPy language reference treats all values as
instances of classes.

• For a type T with attributes named a1, . . . , an, a value of type T is
denoted

T (a1 = l1, . . . , an = ln)

• That is, every class value maps the attribute names into locations in
the store that hold the values of those attributes.

• Why the indirection? Why not instead use the values of the at-
tributes directly?

• The problem that locations solve is shown by examples like this:

class A(object):

x: int = 3

anA: A = None

alias: A = None

anA = A()

alias = anA

anA.x = 4 # Problem: How to explain that alias.x also changes.
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Immutables

• The basic types int, bool, and str do not have mutable fields, so that
it is unnecessary to use the indirection used for other classes.

• So the ChocoPy reference makes these special cases, and in the
semantics, their values are represented instead as

int(v) # The int object representing the integer v.

bool(b) # The bool object repreenting True/False value b

str(n, s) # The str object representing the string s of length n

• Hence, we can write the rule for integer literals like this:

i is an integer literal

G,E, S ⊢ i : int(i), S,
[int]

(Well, strictly speaking, this is abuse of notation. The numeral i,
which appears in the program, is the denotation of the number—the
mathematical value i, so that in the last line of the rule, i means
two different things. While I personally revel in such pedantry, it
is perhaps not too important to be so fussy for the purposes of this
course.)
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Arithmetic

• When describing operations such as e1+e2, we must take into account
the fact that either e1 or e2 might modify the program state.

• Thus giving us this rule:

G,E, S ⊢ e1 : int(i1), S1,
G,E, S1 ⊢ e2 : int(i2), S2,

op ∈ {+, -, *,//, %}
op ∈ {//, %} ⇒ i2 6= 0

v = int(i1 op i2)

G,E, S ⊢ e1 op e2 : v, S2,
[arith]

• There is a subtle point here: the above says that e1 and e2 must be
evaluated in that order (why?).

• In contrast, the C language does not have this constraint, which
gives compiler writers an easier time, but doesn’t particularly help
programmers and really complicates the formal semantics.
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