
Lecture #25: More Special Effects—Exceptions and
OOP

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 1

Exceptions and Continuations

• Exception-handling in programming languages is a very limited form
of continuation.

• Execution continues after a function call that is still active when
exception raised.

• Java provides mechanism to return a value with the exception, but
this adds no new complexity.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 2

Approach I: Do Nothing

• Some say keep it simple; don’t bother with exceptions.

• Use return code convention:

Example: C library functions often return either 0 for OK or non-
zero for various degrees of badness.

• Problems:

– Forgetting to check.

– Code clutter.

– Clumsiness: makes value-returning functions less useful.

– Slight cost in always checking return codes.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 3

Approach II: Non-Standard Return

• First idea is to modify calls so that they look like this:

jal func

j ERROR_HANDLER

code for normal return

...

ERROR_HANDLER:

code to handle exception

• Normal return is now jr ra, 4 (skips over the jump instruction).

• To throw exception:

– Put type of exception in some standard register or memory loca-
tion.

– Return using jr ra

• Exception-handling code decides whether it can handle the excep-
tion, and does another exception return if not.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 4



Approach III: Stack manipulation

• C does not have an exception mechanism built into its syntax, but
uses library routines:

jmp_buf catch_point;

void Caller () {

if (setjmp (catch_point) == 0) {

normal case, which eventually
gets down to Callee

} else {

handle exception

}

}

void Callee () {

...

// Throw exception:

longjmp (catch_point, 42);

...

}

...

Caller’s
frame

...
other
frames

...

Callee’s
frame

Caller’s
FP, SP,
addr of

setjmp call
& others

catch point:

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 5

Approach III: Discussion

• On exception, call to setjmp appears to return twice, with two dif-
ferent values.

• Does not require help from compiler,

• But implementation is architecture-specific.

• Overhead imposed on every setjmp call.

• If used to implement try and catch, therefore, would impose cost
on every try.

• Subtle problems involving variables that are stored in registers:

– The jmp buf typically has to store such registers, but

– That means the value of some local variables may revert unpre-
dictably upon a longjmp.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 6

Approach IV: PC tables

• Sun’s Java implementation uses a different approach.

• Compiler generates a table mapping instruction addresses (program
counter (PC) values) to exception handlers for each function.

• If needed, compiler also leaves behind information necessary to re-
turn from a function (“unwind the stack”) when exception thrown.

• To throw exception E:

while (current PC doesn’t map to handler for E)
unwind stack to last caller

• Under this approach, a try-catch incurs no cost unless there is an
exception, but

• Throwing and handling the exception more expensive than other ap-
proaches, and

• Tables add space.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 7

New Topic: Dynamic Method Selection and OOP

• “Interesting” language feature introduced by Simula 67, Smalltalk,
C++, Java: the virtual function (to use C++ terminology).

• Problem:

– Arrange classes in a hierarchy of types.

– Instance of subtype “is an” instance of its supertype(s).

– In particular, inherits their methods, but can override them.

– A dynamic effect: Cannot in general tell from program text what
body of code executed by a given call.

• Implementation difficulty (as usual) depends on details of a lan-
guage’s semantics.

• Some things still static:

– Names of functions, numbers of arguments are (usually) known

– Compiler can handle overloading by inventing new names for func-
tions. E.g., G++ encodes a function f(int x) in class Q as ZN1Q1fEi,
and f(int x, int y) as ZN1Q1fEii.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 8



I. Fully Dynamic Approach

• Regular Python is completely dynamic:

class A:

x = 2

def f (self): return 42

a = A (); b = A ()

print a.x, a.f() # Prints 2 42

a.x = lambda r, z: r.w * z

a.f = 13; a.w = 5

print a.x(a, 3), a.f, a.w # Prints 15 13 5

print b.x(b, 3), b.f, b.w # Error (x not a function)

print A.x # Prints 2

A.x = lambda (self): 19

A.f = 2

A.v = 1

c = A ()

print c.x (), c.f, c.v # Prints 19, 2, 1

print b.x (), b.f, b.v # Prints 19, 2, 1

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 9

Characteristics of Dynamic Approach

• Each class instance is independent. Contents of class definition
merely used until a new value is assigned to an attribute of the in-
stance.

• New attributes can be added freely to instances or to class.

• In other variants of this approach, there are no classes at all, only
instances, and we get new instances by cloning existing objects, and
possibly then adding new attributes.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 10

Implementing the Dynamic Approach

• Simple strategy: just put a dictionary in every instance, and in class.

• Create an instance by making fresh copy of class’s dictionary.

• Check for value of attribute in object’s dictionary, then in that of
its class, superclass, etc.

• All checking at runtime.

• All objects (or pointers) carry around dynamic type.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 11

Pros and Cons of Dynamic Approach

• Extremely flexible

• Conceptually simple

• Implementation easy

• Space overhead: every instance has pointers to all methods

• Time overhead: lookup on each call

• No static checking

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 12



II. Straight Single Inheritance, Dynamic Typing

• Each class has fixed set of methods and instance variables

• Methods have fixed definition in each class.

• Classes can inherit from single superclass.

• Otherwise, types of parameters, variables, etc., still dynamic

• Basically technique in Smalltalk, Objective C.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 13

Implementing the Smalltalk-like Approach

• Instances need not carry around copies of function pointers.

• Instead, each class has a data structure mapping method names to
functions, and instance-variable names to offsets from the start of
the object.

class A:

def f (...): body1

def g (...): body2

x = 3

class B(A):

def f (...): body3

def h (...): body4

y = 2

a = A ()

b = B ()

super

f: body1

g: body2

x@4: 3

A:

super

f: body3

h: body4

y@8: 2

B:

class:

3

class:

3

2

a:

b:

“y is stored at offset 8 from start of instance”

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 14

Pros and Cons of Smalltalk Approach

• Only need to store modifiable things—instance variables—in instances.

• Data structure can be a bit faster at accessing than fully dynamic
method

• But still, not much static checking possible, and

• Some lookup of method names required.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 15

Single Inheritance with Static Types

• Consider Java without interfaces. Type can inherit from at most
one immediate superclass.

• For an access, x.w, insist that compiler knows a supertype of x’s
dynamic type that defines w.

• Insist that all possible overridings of a method have compatible pa-
rameter lists and return values.

• Use a technique similar to previous one, but put entries for all meth-
ods (whether or not overridden) in each class data structure.

• Such class data structures are called “virtual tables” or “vtables” in
C++ parlance.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 16



Implementation of Simple Static Single Inheritance

class A {

void f () { body1 }

void g () { body2 }

int x = 3

}

class B extends A {

void f () { body3 }

void h () { body4 }

int y = 2

}

---------

a = new A ()

b = new B ()

f: body1

g: body2

A:

f: body3

g: body2

h: body4

B:

vtbl:

3

vtbl:

3

2

a:

b:

• No need to store offsets of x and y; compiler knows where they are.

• Also, compiler knows where to find ‘f’, ‘g’, ‘h’ in virtual tables.

• Important: offsets of variables in instances and of method pointers
in virtual tables are known constants, the same for all subtypes.

• So compiler knows how to call methods of b even if static type is A!

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 17

Interfaces

• Java allows interface inheritance of any number of interface types
(introduces no new bodies).

• This complicates life: consider

class A { class B { interface C {

int x; int y; f ();

public f () { ... } g () { ... } }

} h () { ... }

public f () { ... }

}

/*----------------------------------------------------*/

class A2 extends A class B2 extends B

implements C implements C

{...} { ... }

/*----------------------------------------------------*/

void f (C y) { y.f () } // How can this work?

• We can compile A and B without knowledge of C, A2, B2.

• How can we make the virtual table of A2 and B2 compatible with
each other so that f is at same known offset regardless of whether
dynamic type of C is A2 or B2? (Above isn’t hardest example!)

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 18

Interface Implementation I: Brute Force

• One approach is to have the system assign a different offset glob-
ally to each different function signature

(Functions f(int x) and f() have different function signatures)

• So in previous example, the virtual tables can be:

A: B: C:
0: unused 0: pntr to B.g 0: unused
4: unused 4: pntr to B.h 4: unused
8: pntr to A.f 8: pntr to B.f 8: pntr to C.f

A2: B2:
0: unused 0: pntr to B.g
4: unused 4: pntr to B.h
8: pntr to A.f 8: pntr to B.f

• No slowing of method calls.

• But, Total size of tables gets big (some optimization possible).

• And, must take into account all classes before laying out tables.

Complicates dynamic linking.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 19

Interface Implementation II: Make Interface Values
Different

• Another approach is to represent values of static type C (an inter-
face type) differently.

• Converting value x2 of type B2 to C then causes C to point to a
two-word quantity:

– Pointer to x2

– Pointer to a cut-down virtual table containing just the f entry
from B2 (at offset 0).

• Means that converting to interface requires work and allocates stor-
age.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 20



Interface Implementation II, Illustrated

class A {

void f () { body1 }

void g () { body2 }

void h () { body3 }

int x = 3;

}

interface C { void g (); }

class B extends A

implements C { }

B b = new B ();

C c = b;

// Create "interface object"

c.g ();

// Get g from c.vtbl, ...

// ...and use c.obj as ‘this’.

f: body1

g: body2

h: body3

A:

g: body2

C table for B:

f: body1

g: body2

h: body3

B:

vtbl:

3

b:

vtbl:

obj:

c:

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 21

Improving Interface Implementation II

• How can we avoid doing allocation to create value of interface type
C?

• One method: extend the virtual table of all types to include an in-
terface vector.

• Each entry in this vector identifies an interface the type imple-
ments, plus the table (e.g. “C table for B” in last slide).

• To implement ‘C c = b’ from last slide, just copy pointer b, as for
the usual cases when assigning to a variable whose type is a super-
type of the value assigned.

• To implement ‘c.g()’ from last slide, find the “C table” in the inter-
face vector for object pointed to be c and fetch the entry for g.
Just call as usual.

• Question for the reader: How best to design the interface vector?

– Want fetching of c.g to be fast,

– So best to avoid having to actually perform a search at execution
time. How?

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 22

Full Multiple Inheritance

• Java allows multiple inheritance only via interfaces.

• Important point: interfaces don’t have instance variables.

• Instance variables basically mess everything up for multiple inheri-
tance, assuming we want to keep constant offsets to instance vari-
ables.

class A { class B {

int x = 19; int y = 42;

void f () { ... x ... h() ... } void g () { ... y ... h() ... }

void h () {... } void h () {... }

} }

class D extends A, B {

// Where do x and y go?

void h () {... }

}

• If aD is a D, then aD.f expects that ‘this’ points to an A, aD.g expects
that it points to a B, but aD.h expects it to point to a D.

• How can these all be true??

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 23

Full Multiple Inheritance: What Must Work

Basically, we must solve the problem of insuring that

• All of the following work (Java syntax, but not quite Java!), and

• All method calls and instance-variable accesses involve small, fast
unconditional, non-looping code sequences.

class A {

int x = 19;

int f(A p) { x += 1; h(x + p.x); return x; }

int h(int y) { print(x+y); }

}

class B {

int y = 42;

int g(B p) { y += 1; h(y + p.y); return y; }

int h(int z) { print(y*z); }

}

class D extends A, B {

@Override

int h (int a) { this.f(this); this.g(this); print(x + y + a); }

}

D d; A a; B b; a.f(a); b.g(b); a.h(3); b.h(3); d.f(a); d.g(b); d.h(3)

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 24



Implementing Full Multiple Inheritance I

• Idea is to extend the contents of the virtual table with an offset
for each method.

• Offset tells how to adjust the ’this’ pointer before calling.

• For the classes from the last slide:

f: body of A.f

0

h: body of A.h

0

A:

g: body of B.g

0

h: body of B.h

0

B:

f: body of A.f

0

h: body of D.h

0

g: body of B.g

8

D:

g: body of B.g

0

h: body of D.h

-8

D (B part):

vtbl:0:

194:

anA

vtbl:0:

424:

aB

vtbl:0:

194:

vtbl:8:

4212:

aD

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 25

Implementing Full Multiple Inheritance I (contd.)

• To call aD.g,

– Fetch function address of g from D table.

– Call it, but first add 8 to pointer value of aD so as to get a pointer
to the “B part” of aD.

• When aD.g eventually calls h (actually this.h),

– ‘this’ refers to the “B part” of aD.

– Its virtual table is “D (B part)” in the preceding slide.

– Fetching h from that table gives us D.h, . . .

– . . . which we call, after first adding the -8 offset from the table
to “this.”

– Thus, we end up calling D.h with a “this” value that points to aD,
as it expects.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 26

Implementing Full Multiple Inheritance II

• First implementation slows things down in all cases to accommodate
unusual case.

• Would be better if only the methods inherited from B (for example)
needed extra work.

• Alternative design: use stubs to adjust the ’this’ pointer.

• Define B.g1 to add 8 to the ’this’ pointer and then call B.g; and D.h1
to subtract 8 and then call D.h.:

f: body of A.f
h: body of A.h

A:

g: body of B.g
h: body of B.h

B:

f: body of A.f
h: body of D.h
g: body of B.g1

D:

g: body of B.g
h: body of D.h1

D (B part):

vtbl:0:

194:

vtbl:0:

424:

vtbl:0:

194:

vtbl:8:

4212:

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 27


	Lecture #25: More Special Effects—Exceptions and OOP
	Exceptions and Continuations
	Approach I: Do Nothing
	Approach II: Non-Standard Return
	Approach III: Stack manipulation
	Approach III: Discussion
	Approach IV: PC tables
	New Topic: Dynamic Method Selection and OOP
	I. Fully Dynamic Approach
	Characteristics of Dynamic Approach
	Implementing the Dynamic Approach
	Pros and Cons of Dynamic Approach
	II. Straight Single Inheritance, Dynamic Typing
	Implementing the Smalltalk-like Approach
	Pros and Cons of Smalltalk Approach
	Single Inheritance with Static Types
	Implementation of Simple Static Single Inheritance
	Interfaces
	Interface Implementation I: Brute Force
	Interface Implementation II: Make Interface Values Different
	Interface Implementation II, Illustrated
	Improving Interface Implementation II
	Full Multiple Inheritance
	Full Multiple Inheritance: What Must Work
	Implementing Full Multiple Inheritance I
	Implementing Full Multiple Inheritance I (contd.)
	Implementing Full Multiple Inheritance II

