
Lecture #25: More Special Effects—Exceptions and
OOP
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Exceptions and Continuations

• Exception-handling in programming languages is a very limited form
of continuation.

• Execution continues after a function call that is still active when
exception raised.

• Java provides mechanism to return a value with the exception, but
this adds no new complexity.
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Approach I: Do Nothing

• Some say keep it simple; don’t bother with exceptions.

• Use return code convention:

Example: C library functions often return either 0 for OK or non-
zero for various degrees of badness.

• Problems:

– Forgetting to check.

– Code clutter.

– Clumsiness: makes value-returning functions less useful.

– Slight cost in always checking return codes.
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Approach II: Non-Standard Return

• First idea is to modify calls so that they look like this:

jal func

j ERROR_HANDLER

code for normal return

...

ERROR_HANDLER:

code to handle exception

• Normal return is now jr ra, 4 (skips over the jump instruction).

• To throw exception:

– Put type of exception in some standard register or memory loca-
tion.

– Return using jr ra

• Exception-handling code decides whether it can handle the excep-
tion, and does another exception return if not.
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Approach III: Stack manipulation

• C does not have an exception mechanism built into its syntax, but
uses library routines:

jmp_buf catch_point;

void Caller () {

if (setjmp (catch_point) == 0) {

normal case, which eventually
gets down to Callee

} else {

handle exception

}

}

void Callee () {

...

// Throw exception:

longjmp (catch_point, 42);

...

}

...

Caller’s
frame

...
other
frames

...

Callee’s
frame

Caller’s
FP, SP,
addr of

setjmp call
& others

catch point:
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Approach III: Discussion

• On exception, call to setjmp appears to return twice, with two dif-
ferent values.

• Does not require help from compiler,

• But implementation is architecture-specific.

• Overhead imposed on every setjmp call.

• If used to implement try and catch, therefore, would impose cost
on every try.

• Subtle problems involving variables that are stored in registers:

– The jmp buf typically has to store such registers, but

– That means the value of some local variables may revert unpre-
dictably upon a longjmp.
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Approach IV: PC tables

• Sun’s Java implementation uses a different approach.

• Compiler generates a table mapping instruction addresses (program
counter (PC) values) to exception handlers for each function.

• If needed, compiler also leaves behind information necessary to re-
turn from a function (“unwind the stack”) when exception thrown.

• To throw exception E:

while (current PC doesn’t map to handler for E)
unwind stack to last caller

• Under this approach, a try-catch incurs no cost unless there is an
exception, but

• Throwing and handling the exception more expensive than other ap-
proaches, and

• Tables add space.
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New Topic: Dynamic Method Selection and OOP

• “Interesting” language feature introduced by Simula 67, Smalltalk,
C++, Java: the virtual function (to use C++ terminology).

• Problem:

– Arrange classes in a hierarchy of types.

– Instance of subtype “is an” instance of its supertype(s).

– In particular, inherits their methods, but can override them.

– A dynamic effect: Cannot in general tell from program text what
body of code executed by a given call.

• Implementation difficulty (as usual) depends on details of a lan-
guage’s semantics.

• Some things still static:

– Names of functions, numbers of arguments are (usually) known

– Compiler can handle overloading by inventing new names for func-
tions. E.g., G++ encodes a function f(int x) in class Q as ZN1Q1fEi,
and f(int x, int y) as ZN1Q1fEii.
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I. Fully Dynamic Approach

• Regular Python is completely dynamic:

class A:

x = 2

def f (self): return 42

a = A (); b = A ()

print a.x, a.f() # Prints 2 42

a.x = lambda r, z: r.w * z

a.f = 13; a.w = 5

print a.x(a, 3), a.f, a.w # Prints 15 13 5

print b.x(b, 3), b.f, b.w # Error (x not a function)

print A.x # Prints 2

A.x = lambda (self): 19

A.f = 2

A.v = 1

c = A ()

print c.x (), c.f, c.v # Prints 19, 2, 1

print b.x (), b.f, b.v # Prints 19, 2, 1
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Characteristics of Dynamic Approach

• Each class instance is independent. Contents of class definition
merely used until a new value is assigned to an attribute of the in-
stance.

• New attributes can be added freely to instances or to class.

• In other variants of this approach, there are no classes at all, only
instances, and we get new instances by cloning existing objects, and
possibly then adding new attributes.
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Implementing the Dynamic Approach

• Simple strategy: just put a dictionary in every instance, and in class.

• Create an instance by making fresh copy of class’s dictionary.

• Check for value of attribute in object’s dictionary, then in that of
its class, superclass, etc.

• All checking at runtime.

• All objects (or pointers) carry around dynamic type.
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Pros and Cons of Dynamic Approach

• Extremely flexible

• Conceptually simple

• Implementation easy

• Space overhead: every instance has pointers to all methods

• Time overhead: lookup on each call

• No static checking
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II. Straight Single Inheritance, Dynamic Typing

• Each class has fixed set of methods and instance variables

• Methods have fixed definition in each class.

• Classes can inherit from single superclass.

• Otherwise, types of parameters, variables, etc., still dynamic

• Basically technique in Smalltalk, Objective C.
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Implementing the Smalltalk-like Approach

• Instances need not carry around copies of function pointers.

• Instead, each class has a data structure mapping method names to
functions, and instance-variable names to offsets from the start of
the object.

class A:

def f (...): body1

def g (...): body2

x = 3

class B(A):

def f (...): body3

def h (...): body4

y = 2

a = A ()

b = B ()

super

f: body1

g: body2

x@4: 3

A:

super

f: body3

h: body4

y@8: 2

B:

class:

3

class:

3

2

a:

b:

“y is stored at offset 8 from start of instance”
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Pros and Cons of Smalltalk Approach

• Only need to store modifiable things—instance variables—in instances.

• Data structure can be a bit faster at accessing than fully dynamic
method

• But still, not much static checking possible, and

• Some lookup of method names required.
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Single Inheritance with Static Types

• Consider Java without interfaces. Type can inherit from at most
one immediate superclass.

• For an access, x.w, insist that compiler knows a supertype of x’s
dynamic type that defines w.

• Insist that all possible overridings of a method have compatible pa-
rameter lists and return values.

• Use a technique similar to previous one, but put entries for all meth-
ods (whether or not overridden) in each class data structure.

• Such class data structures are called “virtual tables” or “vtables” in
C++ parlance.
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Implementation of Simple Static Single Inheritance

class A {

void f () { body1 }

void g () { body2 }

int x = 3

}

class B extends A {

void f () { body3 }

void h () { body4 }

int y = 2

}

---------

a = new A ()

b = new B ()

f: body1

g: body2

A:

f: body3

g: body2

h: body4

B:

vtbl:

3

vtbl:

3

2

a:

b:

• No need to store offsets of x and y; compiler knows where they are.

• Also, compiler knows where to find ‘f’, ‘g’, ‘h’ in virtual tables.

• Important: offsets of variables in instances and of method pointers
in virtual tables are known constants, the same for all subtypes.

• So compiler knows how to call methods of b even if static type is A!
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Interfaces

• Java allows interface inheritance of any number of interface types
(introduces no new bodies).

• This complicates life: consider

class A { class B { interface C {

int x; int y; f ();

public f () { ... } g () { ... } }

} h () { ... }

public f () { ... }

}

/*----------------------------------------------------*/

class A2 extends A class B2 extends B

implements C implements C

{...} { ... }

/*----------------------------------------------------*/

void f (C y) { y.f () } // How can this work?

• We can compile A and B without knowledge of C, A2, B2.

• How can we make the virtual table of A2 and B2 compatible with
each other so that f is at same known offset regardless of whether
dynamic type of C is A2 or B2? (Above isn’t hardest example!)
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Interface Implementation I: Brute Force

• One approach is to have the system assign a different offset glob-
ally to each different function signature

(Functions f(int x) and f() have different function signatures)

• So in previous example, the virtual tables can be:

A: B: C:
0: unused 0: pntr to B.g 0: unused
4: unused 4: pntr to B.h 4: unused
8: pntr to A.f 8: pntr to B.f 8: pntr to C.f

A2: B2:
0: unused 0: pntr to B.g
4: unused 4: pntr to B.h
8: pntr to A.f 8: pntr to B.f

• No slowing of method calls.

• But, Total size of tables gets big (some optimization possible).

• And, must take into account all classes before laying out tables.

Complicates dynamic linking.
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Interface Implementation II: Make Interface Values
Different

• Another approach is to represent values of static type C (an inter-
face type) differently.

• Converting value x2 of type B2 to C then causes C to point to a
two-word quantity:

– Pointer to x2

– Pointer to a cut-down virtual table containing just the f entry
from B2 (at offset 0).

• Means that converting to interface requires work and allocates stor-
age.
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Interface Implementation II, Illustrated

class A {

void f () { body1 }

void g () { body2 }

void h () { body3 }

int x = 3;

}

interface C { void g (); }

class B extends A

implements C { }

B b = new B ();

C c = b;

// Create "interface object"

c.g ();

// Get g from c.vtbl, ...

// ...and use c.obj as ‘this’.

f: body1

g: body2

h: body3

A:

g: body2

C table for B:

f: body1

g: body2

h: body3

B:

vtbl:

3

b:

vtbl:

obj:

c:
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Improving Interface Implementation II

• How can we avoid doing allocation to create value of interface type
C?

• One method: extend the virtual table of all types to include an in-
terface vector.

• Each entry in this vector identifies an interface the type imple-
ments, plus the table (e.g. “C table for B” in last slide).

• To implement ‘C c = b’ from last slide, just copy pointer b, as for
the usual cases when assigning to a variable whose type is a super-
type of the value assigned.

• To implement ‘c.g()’ from last slide, find the “C table” in the inter-
face vector for object pointed to be c and fetch the entry for g.
Just call as usual.

• Question for the reader: How best to design the interface vector?

– Want fetching of c.g to be fast,

– So best to avoid having to actually perform a search at execution
time. How?
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Full Multiple Inheritance

• Java allows multiple inheritance only via interfaces.

• Important point: interfaces don’t have instance variables.

• Instance variables basically mess everything up for multiple inheri-
tance, assuming we want to keep constant offsets to instance vari-
ables.

class A { class B {

int x = 19; int y = 42;

void f () { ... x ... h() ... } void g () { ... y ... h() ... }

void h () {... } void h () {... }

} }

class D extends A, B {

// Where do x and y go?

void h () {... }

}

• If aD is a D, then aD.f expects that ‘this’ points to an A, aD.g expects
that it points to a B, but aD.h expects it to point to a D.

• How can these all be true??
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Full Multiple Inheritance: What Must Work

Basically, we must solve the problem of insuring that

• All of the following work (Java syntax, but not quite Java!), and

• All method calls and instance-variable accesses involve small, fast
unconditional, non-looping code sequences.

class A {

int x = 19;

int f(A p) { x += 1; h(x + p.x); return x; }

int h(int y) { print(x+y); }

}

class B {

int y = 42;

int g(B p) { y += 1; h(y + p.y); return y; }

int h(int z) { print(y*z); }

}

class D extends A, B {

@Override

int h (int a) { this.f(this); this.g(this); print(x + y + a); }

}

D d; A a; B b; a.f(a); b.g(b); a.h(3); b.h(3); d.f(a); d.g(b); d.h(3)
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Implementing Full Multiple Inheritance I

• Idea is to extend the contents of the virtual table with an offset
for each method.

• Offset tells how to adjust the ’this’ pointer before calling.

• For the classes from the last slide:

f: body of A.f

0

h: body of A.h

0

A:

g: body of B.g

0

h: body of B.h

0

B:

f: body of A.f

0

h: body of D.h

0

g: body of B.g

8

D:

g: body of B.g

0

h: body of D.h

-8

D (B part):

vtbl:0:

194:

anA

vtbl:0:

424:

aB

vtbl:0:

194:

vtbl:8:

4212:

aD
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Implementing Full Multiple Inheritance I (contd.)

• To call aD.g,

– Fetch function address of g from D table.

– Call it, but first add 8 to pointer value of aD so as to get a pointer
to the “B part” of aD.

• When aD.g eventually calls h (actually this.h),

– ‘this’ refers to the “B part” of aD.

– Its virtual table is “D (B part)” in the preceding slide.

– Fetching h from that table gives us D.h, . . .

– . . . which we call, after first adding the -8 offset from the table
to “this.”

– Thus, we end up calling D.h with a “this” value that points to aD,
as it expects.

Last modified: Fri Mar 22 17:24:08 2019 CS164: Lecture #25 26

Implementing Full Multiple Inheritance II

• First implementation slows things down in all cases to accommodate
unusual case.

• Would be better if only the methods inherited from B (for example)
needed extra work.

• Alternative design: use stubs to adjust the ’this’ pointer.

• Define B.g1 to add 8 to the ’this’ pointer and then call B.g; and D.h1
to subtract 8 and then call D.h.:

f: body of A.f
h: body of A.h

A:

g: body of B.g
h: body of B.h

B:

f: body of A.f
h: body of D.h
g: body of B.g1

D:

g: body of B.g
h: body of D.h1

D (B part):

vtbl:0:

194:

vtbl:0:

424:

vtbl:0:

194:

vtbl:8:

4212:
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