
Lecture #23: Runtime Support for Functions (contd)

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 1

4: Allow Nesting of Functions, Up-Level Addressing

• When functions can be nested, there
are three classes of variable:

a. Local to function.

b. Local to enclosing function.

c. Global

• Accessing (a) or (c) is easy. It’s (b)
that’s interesting.

• Consider (in Python):

def f ():

y = 42 # Local to f

def g (n, q):

if n == 0: return q+y

else: return g (n-1, q*2)

• Here, y can be any distance away from
top of stack.

f’s
frame

g’s
frame

g’s
frame

...

g’s
frame

Top of stack

Enclosing f

How far???

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 2

Static Links

• To overcome this problem, go
back to environment diagrams!

• Each diagram had a pointer to
lexically enclosing environment

• In Python example from last
slide, each ‘g’ frame contains a
pointer to the ‘f’ frame where
that ‘g’ was defined: the static
link (SL)

• To access local variable, use
frame-base pointer (or maybe
stack pointer).

• To access global, use absolute
address.

• To access local of nesting func-
tion, follow static link once per
difference in levels of nesting. ...

DL
ra

f’s locals
SL for g[1]

params to g[1]

DL
ra

g’s locals[1]
SL for g[2]

params to g[2]

DL
ra

g’s locals[2]
SL for g[3]

params to g[3]

DL
ra

g’s locals[3]
Top of stack

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 3

Calling sequence for RISC V: f0

C code:

int

f0 (int n0)

{

int s = -n0;

int g1 () { return s; }

int f1 (int n1) {

int f2() {

return n0 + s

+ n1 + g1();

}

return n0 + f2();

}

return f1(10);

}

Assembly excerpt for f0:

f0:

sw fp, 0(sp) # Save old frame pointer

sw ra, -4(sp) # Save return address

addi sp, sp, -12 # Adjust SP to leave room for s, ra, DL

addi fp, sp, 8 # FP now points to ra.

lw t0, 8(fp) # n0

sub t0, zero, t0 # -n0

sw t0, -4(fp) # Set s

sw fp, 0(sp) # SL to f1

li t0, 10 # argument to f1

sw t0, -4(sp)

addi sp, sp, -8 # Adjust for arguments

jal f1

addi sp, sp, 8

addi sp, fp, 4

lw ra, 0(fp)

lw fp, 4(fp)

jr ra

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 4

Calling sequence for RISC V: f1

C code:

int

f0 (int n0)

{

int s = -n0;

int g1 () { return s; }

int f1 (int n1) {

int f2() {

return n0 + s

+ n1 + g1();

}

return n0 + f2();

}

return f1(10);

}

f1:

sw fp, 0(sp) # Save old frame pointer

sw ra, -4(sp) # Save return address

addi sp, sp, -8 # Adjust SP to leave room for ra, DL

addi fp, sp, 4 # FP now points to ra.

lw t0, 12(fp) # Load my static link (to f0)

lw t2, 8(t0) # n0

sw t2, 0(sp) # Save it for now.

sw fp, -4(sp) # Push f2’s static link (my fp)

addi sp, sp, -8 # Adjust sp

jal f2

addi sp, sp, 8

lw t0, 0(sp) # Saved n0 from before call

add a0, t0, a0 # n0 + f2()

addi sp, fp, 4 # Restore sp

lw ra, 0(fp) # Restore ra

lw fp, 4(fp) # Restore fp

jr ra

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 5

Calling sequence for RISC V: f2

C code:

int

f0 (int n0)

{

int s = -n0;

int g1 () { return s; }

int f1 (int n1) {

int f2() {

return n0 + s

+ n1 + g1();

}

return n0 + f2();

}

return f1(10);

}

f2:

sw fp, 0(sp) # Save old frame pointer

sw ra, -4(sp) # Save return address

addi sp, sp, -8 # Adjust SP to leave room for ra, DL

addi fp, sp, 4 # FP now points to ra.

lw t0, 8(fp) # Load my static link (to f1)

lw t1, 12(t0) # Load f1’s static link (to f0)

lw t2, 8(t1) # n0

lw t3, -4(t1) # s

add t2, t2, t3 # n0 + s

lw t3, 8(t0) # n1

add t2, t2, t3 # n0 + s + n1

sw t2, 0(sp) # Save

sw t1, -4(sp) # SL for g1 (to f0, same as f1)

addi sp, sp, -8 # Adjust stack

jal g1

addi sp, sp, 8

lw t0, 0(sp) # Saved n0 + s + n1

add a0, t0, a0 # n0 + s + n1 + g1()

addi sp, fp, 4 # Restore sp

lw ra, 0(fp) # Restore ra

lw fp, 4(fp) # Restore fp

jr ra

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 6

Calling sequence for the ia32: g1

C code:

int

f0 (int n0)

{

int s = -n0;

int g1 () { return s; }

int f1 (int n1) {

int f2 () {

return n0 + n1

+ s + g1 ();

}

return n0 + f2();

}

f1 (10);

}

Assembly g1:

g1: # Leaf procedure (optimized).

lw t0, 4(sp) # Load my static link (to f0)

lw a0, -4(t0) # s

jr ra

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 7

The Global Display

• Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 ():

q = 42; g1 ()

def f1 ():

def f2 (): ... g2 () ...

def g2 (): ... g2 () ... g1 () ...

... f2 () ... f1 () ...

def g1 (): ... f1 () ...

• Each time we enter a function at lexical level k
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

• Access variable at lexical level k through
DISPLAY[k].

• Relies heavily on scope rules and proper
function-call nesting

f0’s
frame

g1’s
frame

f1’s
frame

f1’s
frame

f2’s
frame

g2’s
frame

g2’s
frame

g1’s
frame

f0 0
g1 1
g2 2

DISPLAY

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 8

Using the global display (sketch)

C code:

int

f0 (int n0)

{

int s = -n0;

int g1 () { return s; }

int f1 (int n1) {

int f2 () {

return n0 + n1

+ s + g1 ();

}

return f2 (s) + f1 (n0)

+ g1 ();

}

f1 (10);

}

f0:

sw fp, 0(sp) # Save old frame pointer

sw ra, -4(sp) # Save return address

addi sp, sp, -16 # Adjust SP for s, ra, DL, old _DISPLAY[0]

addi fp, sp, 12 # FP now points to ra.

lw t0, _DISPLAY+0 # Save old _DISPLAY[0] ...

sw t0, -8(fp) # ... on stack

sw fp, _DISPLAY+0 # And insert my FP in its place.

...

lw t0, -8(fp) # Restore old _DISPLAY[0]

sw t0, _DISPLAY+0

addi sp, fp, 4 # Restore sp

etc.
f1: ...

sw fp, 0(sp) # Save old frame pointer

sw ra, -4(sp) # Save return address

addi sp, sp, -12 # Adjust SP for ra, DL, old _DISPLAY[1]

addi fp, sp, 8 # FP now points to ra.

lw t0, _DISPLAY+4 # Save old _DISPLAY[1] ...

sw t0, -4(fp) # ... on stack

sw fp, _DISPLAY+4 # And insert my FP in its place.

...

lw t0, -4(fp) # Restore old _DISPLAY[0]

sw t0, _DISPLAY+4

addi sp, fp, 4 # Restore sp

etc.
f2 and g1: no extra code, since they have no nested functions.

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 9

Using the global display: accessing nonlocals

C code:

int

f0 (int n0)

{

int s = -n0;

int g1 () { return s; }

int f1 (int n1) {

int f2 () {

return n0 + n1

+ s + g1 ();

}

return f2 (s) + f1 (n0)

+ g1 ();

}

f1 (10);

}

f2:

...

lw t0, _DISPLAY+4 # Load my static link (to f1)

lw t1, _DISPLAY+0 # Load f1’s static link (to f0)

lw t2, 8(t1) # n0

lw t3, -4(t1) # s

add t2, t2, t3 # n0 + s

lw t3, 8(t0) # n1

add t2, t2, t3 # n0 + s + n1

sw t2, 0(sp) # Save

No need to pass static link to g1; it’s in _DISPLAY[1]

addi sp, sp, -4 # Adjust stack

jal g1

...

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 10

5: Allow Function Values, Properly Nested Access

• In C, C++, no function nesting.

• So all non-local variables are global, and have fixed addresses.

• Thus, to represent a variable whose value is a function, need only to
store the address of the function’s code.

• But when nested functions possible, function value must contain
more.

• When function is finally called, must be told what its static link is.

• Assume first that access is properly nested: variables accessed only
during lifetime of their frame.

• So can represent function with address of code + the address of
the frame that contains that function’s definition.

• It’s environment diagrams again!!

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 11

Function-Value Representation

def f0 (x):

def f1 (y):

def f2 (z):

return x + y + z

print h1 (f2)

def h1 (g): g (3)

f1 (42)

• Call f0 from the main program;
look at the stack when f2 finally
is called (see right).

• When f2’s value (as a function)
is computed, current frame is
that of f1. That is stored in the
value passed to h1.

• Easy with static links; global dis-
play technique does not fare as
well [why?]

...

x
DL
ra

f0’s frame
f1’s SL

y
DL
ra

f1’s frame
h1’s SL

g
DL
ra

h1’s frame
g’s SL

z
DL
ra

f2’s frame
Top of stack

code for f2

Value of g (i.e., f2)

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 12

6: General Closures

• What happens when the frame
that a function value points to
goes away?

• If we used the previous repre-
sentation (#5), we’d get a
dangling pointer in this case:

def incr (n):

delta = n

def f (x):

return delta + x

return f

p2 = incr(2)

print p2(3)

...

incr’s SL
DL
ra

incr’s frame
(incl. delta)

code for f

Value of incr(2)

During execution of incr(2)

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 13

Representing Closures

• Could just forbid this case (as
some languages do):

– Algol 68 would not allow
pointer to f (last slide) to be
returned from incr.

– Or, one could allow it, and do
something random when f (i.e.
via delta) is called.

• Scheme and Python allow it and
do the right thing.

• But must in general put local
variables (and a static link) in a
record on the heap, instead of
on the stack.

...

incr’s SL
DL
ra

incr’s frame:
temp storage

etc.

copy of
incr’s SL

incr’s frame:
delta,
& n

HEAP

code for f

Value of incr(2)

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 14

Representing Closures

• Could just forbid this case (as
some languages do):

– Algol 68 would not allow
pointer to f (last slide) to be
returned from incr.

– Or, one could allow it, and do
something random when f (i.e.
via delta) is called.

• Scheme and Python allow it and
do the right thing.

• But must in general put local
variables (and a static link) in a
record on the heap, instead of
on the stack.

• Now frame can disappear harm-
lessly.

...

copy of
incr’s SL

incr’s frame:
delta,
& n

HEAP

code for f

Value of incr(2)

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 14

7: Continuations

• Suppose function return were not the end?

def f (cont): return cont

x = 1

def g (n):

global x, c

if n == 0:

print "a", x, n,

c = call_with_continuation (f)

print "b", x, n,

else: g(n-1); print "c", x, n,

g(2); x += 1; print; c()

Prints:

a 1 0 b 1 0 c 1 1 c 1 2

b 2 0 c 2 1 c 2 2

b 3 0 c 3 1 c 3 2

...

• The continuation, c, passed to f is “the function that does whatever
is supposed to happen after I returns from f (and exits program).”

• Can be used to implement exceptions, threads, co-routines.

• Implementation? Nothing much for it but to put all activation frames
on the heap.

• Distributed cost.

• However, we can do better on special cases like exceptions.

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 15

Summary

Problem Solution
1. Plain: no recursion, no nest-

ing, fixed-sized data with size
known by compiler, first-class
function values.

Use inline expansion or use
static variables to hold return
addresses, locals, etc.

2. #1 + recursion Need stack.
3. #2 + Add variable-sized un-

boxed data
Need to keep both stack
pointer and frame pointer.

4. #3 – first-class function values
+ Nested functions, up-level ad-
dressing

Add static link or global display.

5. #4 + Function values w/ prop-
erly nested accesses: functions
passed as parameters only.

Static link, function values con-
tain their link. (Global display
doesn’t work so well)

6. #5 + General closures: first-
class functions returned from
functions or stored in variables

Store local variables and static
link on heap.

7. #6 + Continuations Put everything on the heap.

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 16

	Lecture #23: Runtime Support for Functions (contd)
	4: Allow Nesting of Functions, Up-Level Addressing
	Static Links
	Calling sequence for RISC V: f0
	Calling sequence for RISC V: f1
	Calling sequence for RISC V: f2
	Calling sequence for the ia32: g1
	The Global Display
	Using the global display (sketch)
	Using the global display: accessing nonlocals
	5: Allow Function Values, Properly Nested Access
	Function-Value Representation
	6: General Closures
	Representing Closures
	7: Continuations
	Summary

