Lecture #23: Runtime Support for Functions (contd) 4: Allow Nesting of Functions, Up-Level Addressing

e When functions can be nested, there
are three classes of variable:

Top of stack

a. Local to function.
b. Local to enclosing function.
c. Global

e Accessing (a) or (c) is easy. It's (b) How far???
that's interesting.

e Consider (in Python):

def £ O:
y = 42 # Local to £
def g (n, @): Enclosing f
if n == 0: return g+y
else: return g (n-1, g*2)

e Here, y can be any distance away from
top of stack.

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 1 Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 2

Static Links Calling sequence for RISC V: fO

Top of stack Assembly excerpt for fO:

ra . £0:
DL C code: sw fp, 0(sp)

. . . int sw ra, -4(sp)
IechaI/y enclosmg environment params to 9[3] £0 (int n0) addi sp, sp, -12 Adjust SP to leave room for s, ra, DL

#

#

#
SL for 9[3] { addi fp, sp, 8 # FP now points to ra.

e In Python example from last g's locals[2] int s = -n0; 1w t0, 8(fp) # n0

#

#

#

e To overcome this prgblem, go g locals[3]
back to environment diagrams!

Save old frame pointer
Save return address

e Each diagram had a pointer to

slide, each '9' frame contains a ra int g1 () { return s; } sub t0, zero, t0 # -no0
int f1 (int n1) { sw t0, -4(fp) Set s

int £2() { sw fp, 0(sp) SL to f1
return n0 + s 1i t0, 10 argument to f1

link (SL) params to 9[2] +1nl + gl(Q); sw t0, -4(sp)
SL for 9[2] 3} addi sp, sp, -8 # Adjust for arguments
e To access local variable, use g's locals[1] return n0 + £20; Jal 1
. ra } addi sp, sp, 8
frame-base pointer (or maybe BL return £1(10); addi sp, fp, 4
stack pOinTer'). } 1w ra, 0(fp)
params to g[1] lu fp, 4(fp)
r ra
SL for g[1])
f's locals
e To access local of nesting func- ra
tion, follow static link once per DL

difference in levels of nesting.

pointer to the 'f' frame where DL
that ‘g’ was defined: the static

e To access global, use absolute
address.

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 3 Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 4

Calling sequence for RISC V: f1

C code:
int
£0 (int nO)

{

int s = -n0;
int gt O { return s; }
int £1 (int n1) {
int £20) {
return n0 + s
+ 10l + gl(Q);
}
return n0 + £f2(0);
¥
return £1(10);

Last modified: Mon Mar 18 00:53:07 2019

f1:

sw fp, 0(sp)

sw ra, -4(sp)
addi sp, sp, -8
addi fp, sp, 4
1w t0, 12(fp)
1w t2, 8(t0)

sw t2, 0(sp)

sw fp, -4(sp)
addi sp, sp, -8
jal f2

addi sp, sp, 8
1w t0, 0(sp)
add a0, t0, a0
addi sp, fp, 4
1w ra, 0(fp)

1w fp, 4(fp)

jr ra

H OH H H OH H H B H

Save old frame pointer

Save return address

Adjust SP to leave room for ra, DL
FP now points to ra.

Load my static link (to £0)

no

Save it for now.

Push f2’s static link (my fp)
Adjust sp

Saved n0 from before call
n0 + £20)

Restore sp

Restore ra

Restore fp

CS164: Lecture #22 5

Calling sequence for RISC V: f2

f2:
sw fp, 0(sp)
sw ra, -4(sp)
addi sp, sp, -8
addi fp, sp, 4
1w t0, 8(fp)
1w t1, 12(t0)
1w t2, 8(t1)
1w t3, -4(t1)
add t2, t2, t3
1w t3, 8(t0)
add t2, t2, t3
sw t2, 0(sp)
sw tl, -4(sp)
addi sp, sp, -8
jal g1
addi sp, sp, 8
1w t0, 0(sp)
add a0, t0, a0
addi sp, fp, 4
1w ra, 0(fp)
1w fp, 4(fp)
jr ra

C code:
int
£0 (int no0)
{
int s = -n0;
int g1 O { return s; }
int f1 (int n1) {
int £20) {
return n0 + s
+nl + g1Q;

n0
s
n0 + s
ni

Save

H OHE H H H OH OH O H H HH HEH

}

return n0 + f2Q);
¥
return £1(10);

Last modified: Mon Mar 18 00:53:07 2019

Save old frame pointer
Save return address
Adjust SP to leave room for ra, DL
FP now points to ra.

Load my static link (to f1)
Load f1’s static link (to £0)

n0 + s + nl

SL for g1 (to f0, same as f1)
Adjust stack

Saved n0 + s + nl
n0 + s + nl + g1Q)
Restore sp
Restore ra
Restore fp

CS164: Lecture #22 6

Calling sequence for the ia32: gl

C code:
int
£0 (int nO)

{

int s = -n0;
int gt O { return s; }
int f1 (int n1) {
int £2 O {
return n0 + nil
+s +gl O
}
return n0 + £2(0);
}
f1 (10);

Last modified: Mon Mar 18 00:53:07 2019

Assembly gl:

gl: # Leaf procedure (optimized).

1w t0, 4(sp)

Load my static link (to £0)

1w a0, -4(t0) # s

jr ra

CS164: Lecture #22 7

The Global Display

e Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def £0 ():
q=42; g1 O
def f1 O:
def £2 ():
def g2 O:
2 O
def gt O:

g2 O
g2 O
f1 ()
f1 O

gl O

e Each time we enter a function at lexical level k
(i.e., nested inside & functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

e Access variable at lexical level k through
DISPLAY[k].

e Relies heavily on scope rules and proper
function-call nesting

Last modified: Mon Mar 18 00:53:07 2019

gl's
frame

g2's
frame

g2's
frame

f2's
frame

fl's
frame

fl's
frame

gl's
frame

fO's
frame

CS164: Lecture #22 8

DISPLAY

Using the global display (sketch) Using the global display: accessing nonlocals

f0: .
sw fp, 0(sp) Save old frame pointer C COde'
sw ra, -4(sp) Save return address int
addi sp, sp, -16 Adjust SP for s, ra, DL, old _DISPLAY[0] £0 (int no) cee
addi fp, sp, 12 FP now points to ra. { 1w tO, _DISPLAY+4 # Load my static.linl.{ (to f1)
C COde: 1w t0, _DISPLAY+0 # Save old _DISPLAY[O] ... int s = -n0; 1w t1, _DISPLAY+0 # Load f1’s static link (to f0)
sw t0, -8(fp) ... on stack int gl O { return s; } 1w t2, 8(t1) # n0
int sw fp, _DISPLAY+0 # And insert my FP in its place. int £1 (int n1) { 1w t3, -4(t1)
£0 (int n0) int £2 O 1 add t2, t2, t3
{ 1w t0, -8(fp) Restore old _DISPLAY[0] return n0 + ni 1w t3, 8(t0)
int s = -n0; sw t0, _DISPLAY+0 +s+gl O add t2, t2, t3

int g1 () { return s; } addi sp, fp, 4 Restore sp } sw t2, 0(sp) # Save
int f1 (int n1) { etc. return £2 (s) + £1 (n0) # No need to pass static link to gl; it’s in _DISPLAY[1]

int 2 O { +g1 0; addi sp, sp, -4 # Adjust stack
return n0 + nl sw fp, 0(sp) Save old frame pointer 3} jal gl
+s+gl O sw ra, -4(sp) Save return address £1 (10);
¥ addi sp, sp, -12 Adjust SP for ra, DL, old _DISPLAY[1]
return £f2 (s) + f1 (n0) addi fp, sp, 8 FP now points to ra.
+ gl O; lw t0, _DISPLAY+4 # Save old _DISPLAY[1] ...

} sw t0, -4(fp) ... on stack
f1 (10); sw fp, _DISPLAY+4 # And insert my FP in its place.

s
n0 + s
ni

n0 + s + nl

#
#
#
#

1w t0, -4(fp) Restore old _DISPLAY[0]
sw t0, _DISPLAY+4
addi sp, fp, 4 # Restore sp
efc.
f2 and gl: no extra code, since they have no nested functions.

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 9 Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #2210

5: Allow Function Values, Properly Nested Access Function-Value Representation

e In C, C++, no function nesting. def fg g) () —— Top of stack
de y): rame

def f2 (z): Bi
e Thus, to represent a variable whose value is a function, need only to return x + y + z > _

store the address of the function's code. print hi (£2) gs oL Value of g (i.e., f2)
def hl (g): g (3) hl's frame
f1 (42) 5?_

e So all non-local variables are global, and have fixed addresses.

e But when nested functions possible, function value must contain
more.

e When function is finally called, must be told what its static link is. e Call £0 from the main program; 9
look at the stack when £2 finally l:\l s SL

is called (see right). f1's frame
5?_ code for f2

e Assume first that access is properly nested: variables accessed only
during lifetime of their frame.

. . e When £2's value (as a function
e So can represent function with address of code + the address of is computed cur'(r'em‘ frame is)

Y
the frame that contains that function's definition. that of £1. That is stored in the fOfsl ?‘rf]l;ne

ra
DL
X

e It's environment diagrams again!! value passed to hi.

e Easy with static links; global dis-
play technique does not fare as
well [why?]

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 11 Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #2212

Representing Closures

6: General Closures

e What happens when the frame
that a function value points to
goes away?

e Could just forbid this case (as
some languages do):

Value of incr(2) incr's frame:

- Algol 68 would not allow deltaq,

pointer to f (last slide) to be &n

returned from incr. copy of

N incr's SL
|qcrs frame - Or, one could allow it, and do
(incl. delta)

something random when f (i.e. |incr's frame:
code for f via delta) is called. temp storage
etc.

e If we used the previous repre-
sentation (#5), we'd get a
dangling pointer in this case:

def incr (n):
delta = n
def f (x):
return delta + x
return f

ra
DL HEAP
incr's SL e Scheme and Python allow it and
do the right thing. l")‘cll_

e But must in general put local | incr's SL
variables (and a static link) in a
record on the heap, instead of
on the stack.

Value of incr(2)

During execution of incr(2)
p2 = incr(2)
print p2(3)

e Now frame can disappear harm-
lessly. code for f

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #2213 Last modified: Mon Mar 18 00:53:07 2019 C5164: Lecture #22

7: Continuations Summary

e Suppose function return were not the end?

def f (cont): return cont
x =1

Problem

Solution

def g (n): # Prints:
global x, ¢ # a10b10cillct?
if n == 0 # b20c21c22

print "a", x, n, # b30c31c32
¢ = call_with_continuation (f)

print "b", x, n,

. Plain: no recursion, no nest-

ing, fixed-sized data with size
known by compiler, first-class
function values.

Use inline expansion or use
static variables to hold return
addresses, locals, etc.

. #1 + recursion

Need stack.

. #2 + Add variable-sized un-

boxed data

Need to keep both stack
pointer and frame pointer.

else: g(n-1); print "c", x, n,
g(2); x += 1; print; c()

e The continuation, c, passed to f is “the function that does whatever
is supposed to happen after I returns from f (and exits program).”

e Can be used to implement exceptions, threads, co-routines.

e Implementation? Nothing much for it but to put all activation frames
on the heap.

e Distributed cost.

e However, we can do better on special cases like exceptions.

Last modified: Mon Mar 18 00:53:07 2019 CS164: Lecture #22 15

. #3 - first-class function values

+ Nested functions, up-level ad-
dressing

Add static link or global display.

. #4 + Function values w/ prop-

erly nested accesses: functions
passed as parameters only.

Static link, function values con-
tain their link. (Global display
doesn't work so well)

. #5 + General closures: first-

class functions returned from
functions or stored in variables

Store local variables and static
link on heap.

. #6 + Continuations

Last modified: Mon Mar 18 00:53:07 2019

Put everything on the heap.

CS164: Lecture #22

	Lecture #23: Runtime Support for Functions (contd)
	4: Allow Nesting of Functions, Up-Level Addressing
	Static Links
	Calling sequence for RISC V: f0
	Calling sequence for RISC V: f1
	Calling sequence for RISC V: f2
	Calling sequence for the ia32: g1
	The Global Display
	Using the global display (sketch)
	Using the global display: accessing nonlocals
	5: Allow Function Values, Properly Nested Access
	Function-Value Representation
	6: General Closures
	Representing Closures
	7: Continuations
	Summary

