
Lecture #22: Runtime Support for Functions

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 1

Bare Machine to Virtual Machine

• Typical architectures provide simple instructions to support subpro-
grams (functions and procedures).

• Typically, we have some sort of “branch and link” instruction that
branches to an instruction, and puts the address of the instruction
after the branch itself—the return address—in some well-defined
place.

• But there is more to subprogram calls than that, such as local vari-
ables, parameters, dealing with nested calls, etc.

• To deal with these other things, compilers generate code for, in
effect, a virtual machine with a more elaborate call instruction.

• Explicit in the JVM’s invokevirtual instruction.

• For conventional generation of machine code, use various program-
ming conventions.

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 2

Activation Records

• The information needed to manage one procedure activation is called
an activation record (AR) or (stack) frame.

• If procedure F (the caller) calls G (the callee), typically G’s activa-
tion record contains a mix of data about F and G:

– Return address to instructions in F .

– Dynamic link to the AR for F .

– Space to save registers needed by F .

– Space for G’s local variables.

– Information needed to find non-local variables needed by G.

– Temporary space for intermediate results, arguments to and re-
turn values from functions that G calls.

– Assorted machine status needed to restore F ’s context (signal
masks, floating-point unit parameters).

• Depending on architecture and compiler, registers typically hold part
of AR (at times), especially parameters, return values, locals, and
pointers to the current stack top and frame.

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 3

Calling Conventions

• Many variations are possible:

– Can rearrange order of frame elements.

– Can divide caller/callee responsibilities differently.

– Don’t need to use an array-like implementation of the stack: can
use a linked list of ARs.

• An organization is better if it improves execution speed or simplifies
code generation

• The compiler must determine, at compile-time, the layout of activa-
tion records and generate code that correctly accesses locations in
the activation record.

• Furthermore, it is common to compile procedures separately and
without access of each other’s details, which motivates the impo-
sition of calling conventions.

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 4

Static Storage

• Here, static storage refers to variables whose extent is an entire
execution and whose size is typically fixed before execution.

• Not generally stored in an activation record, but assigned a fixed
address once.

• In C/C++ variables with file scope (declared static in C) and with
external linkage (“global”) are in static storage.

• Java’s “static” variables are an odd case: they don’t really fit this
picture (why?)

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 5

Heap Storage

• Variables whose extent is greater than that of the AR in which they
are created can’t be kept there:

Bar foo() { return new Bar(); }

• Call such storage dynamically allocated.

• Typically allocated out of an area called the heap (confusingly, not
the same as the heap used for priority queues!)

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 6

Achieving Runtime Effects—Functions

• Language design and runtime design interact. Semantics of func-
tions make good example.

• Levels of function features:

1. Plain: no recursion, no nesting, fixed-sized data with size known
by compiler.

2. Add recursion.

3. Add variable-sized unboxed data.

4. Allow nesting of functions, up-level addressing.

5. Allow function values w/ properly nested accesses only.

6. Allow general closures.

7. Allow continuations.

• Tension between these effects and structure of machines:

– Machine languages typically only make it easy to access things at
addresses like R + C, where R is an address in a register and C

is a relatively small integer constant.

– Therefore, fixed offsets good, data-dependent offsets bad.

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 7

1: No recursion, no nesting, fixed-sized data

• Total amount of data is bounded, and there is only one instantiation
of a function at a time.

• So all variables, return addresses, and return values can go in fixed
locations.

• No stack needed at all.

• Characterized FORTRAN programs in the early days.

• In fact, can dispense with call instructions altogether: expand func-
tion calls in-line. E.g.,

def f (x):

x *= 42

y = 9 + x;

g (x, y)

f (3)

=⇒ becomes =⇒

x_1 = 3

x_1 *= 42

y_1 = 9 + x_1

g (x_1, y_1)

• However, program may get bigger than you want. Typically, one in-
lines only small, frequently executed functions.

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 8

1: Calling conventions

• If we don’t use function inlining, will need to save return address,
parameters.

• There are many options. Here’s one example, from the IBM 360, of
calling function F from G and passing values 3 and 4:

GArgs DS 2F Reserve 2 4-byte words of static storage */

...

ENTRY G

G ...

LA R1,GArgs Load Address of arguments into register 1

LA R0,3 Store 3 and 4 in GArgs+0 and GArgs+4

ST R0,GArgs

LA R0,4

ST R0,GArgs+4

BAL R14,F Call ("Branch and Link") to F, R14 gets return point

and F might contain

FRet DS F

ENTRY F

F ST R14,FRet Save return address

L R2,0(R1) Load first argument.

...

L R14,FRet Get return address

BR R14 Branch to it

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 9

2: Add recursion

• Now, total amount of data is un-
bounded, and several instantiations of
a function can be active simultaneously.

• Calls for some kind of expandable data
structure: a stack.

• However, variable sizes still fixed, so
size of each activation record (stack
frame) is fixed.

• All local-variable addresses and the
value of dynamic link are known offsets
from stack pointer, which is typically in
a register.

• (The diagram shows the conventions
we’ll use in Project 3, where we’ll define
a stack frame as starting at the return
address or dynamic link.)

...

ra

f’s
locals

params
to g

ra

g’s
locals

params
to f

ra

f’s
locals

Top of stack

Base of
latest frame

fixed distance

Lower addresses

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 10

2: Calling Sequence when Frame Size is Fixed

• So dynamic links not really needed.

• Suppose f calls g calls f , as at right.

• When called, the initial code of g (its
prologue) decrements the stack pointer
by the size of g’s activation record.

• g’s exit code (its epilogue):

– increments the stack pointer by this
same size,

– pops off the return address, and

– branches to address just popped.

...

ra

f’s
locals

params
to g

ra

g’s
locals

params
to f

ra

f’s
locals

Top of stack

Base of
latest frame

fixed distance

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 11

2: Possible calling sequence for Risc V

C code:

int

dist2(int x, int y)

{

return x**2 + y**2;

}

int

g(int q)

{

return dist2(q, 5);

}

Assembly excerpt:

dist2: # Leaf procedure (no need to save ra)

lw t0, 8(sp) # x

mul t0, t0, t0 # x*x

lw t1, 4(sp) # y

mul t1, t1, t1 # y*y

add a0, t0, t1 # x*x+y*y

jr ra

g: # Non-leaf procedure

sw ra, 0(sp) # Save return address

addi sp, sp, -4 # Adjust SP

lw t0, 8(sp) # q

sw t0, 0(sp) # Argument 1

li t0, 5

sw t0, -4(sp) # Argument 2

addi sp, sp, -8 # Put SP below params

jal dist2 # Call

addi sp, sp, 8 # Return SP to pre-dist2 call

lw ra, 4(sp) # Retrieve return address

addi sp, sp, 4 # Return SP to pre-g call

jr ra

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 12

2: Frame pointers

• In the previous example, took all data
relative to a (varying) stack pointer.

• The compiler “knows” at each point how
to restore the stack pointer before re-
turn (fixed-size adjustments).

• Sometimes, it is convenient to have a
pointer to a fixed location in the acti-
vation record—called a frame pointer—
that the callee (called function) must
set and restore.

• For one thing, this makes it easier to
write general procedures that unwind
the stack.

• Frame pointer in register. Previous
value must be saved by each callee (the
dynamic link or control link.)

...

dynamic link

ra

f’s locals

params
to g

dynamic link

ra

g’s locals

params
to f

dynamic link

ra

f’s locals
Top of stack

Frame
pointer

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 13

2: Alternative Calling Sequence with Frame Pointer

C code:

int

dist2(int x, int y)

{

return x**2 + y**2;

}

int

g(int q)

{

return dist2(q, 5);

}

dist2: # Leaf procedure (as before)

lw t0, 8(sp) # x

mul t0, t0, t0 # x*x

lw t1, 4(sp) # y

mul t1, t1, t1 # y*y

add a0, t0, t1 # x*x+y*y

jr ra

g: # Non-leaf procedure (use fp, save ra, old fp---DL).

sw fp, 0(sp) # Save old frame pointer

sw ra, -4(sp) # Save return address

addi sp, sp, -8 # Adjust SP to allocate frame

addi fp, sp, 4 # fp now points to saved return address

lw t0, 8(fp) # q

sw t0, 0(sp) # Argument 1

li t0, 5

sw t0, -4(sp) # Argument 2

addi sp, sp, -8 # Put SP below params

jal dist2 # Call

addi sp, sp, 8 # Return SP to pre-dist2 call

lw ra, 0(fp) # Get saved ra.

addi sp, fp, 4 # Return sp to pre-g call

lw fp, 4(fp) # Return fp to pre-g call

jr ra

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 14

3: Add Variable-Sized Unboxed Data

• “Unboxed” means “not on heap.”

• Boxing allows all quantities on stack to
have fixed size.

• So Java implementations have fixed-
size stack frames.

• But does cost heap allocation, so
some languages also provide for placing
variable-sized data directly on stack
(“heap allocation on the stack”)

• alloca in C, e.g.

• Now we do need dynamic link (DL).

• But can still insure fixed offsets of
data from frame base (frame pointer)
using pointers.

• To right, f calls g, which has variable-
sized unboxed array (see right).

...

DL
ra

f’s
locals

params
to g

DL
ra

local
pointer

other
locals

unboxed
storage

Top of stack

Frame pointer

Last modified: Sun Apr 14 17:45:42 2019 CS164: Lecture #22 15

	Lecture #22: Runtime Support for Functions
	Bare Machine to Virtual Machine
	Activation Records
	Calling Conventions
	Static Storage
	Heap Storage
	Achieving Runtime Effects—Functions
	1: No recursion, no nesting, fixed-sized data
	1: Calling conventions
	2: Add recursion
	2: Calling Sequence when Frame Size is Fixed
	2: Possible calling sequence for Risc V
	2: Frame pointers
	2: Alternative Calling Sequence with Frame Pointer
	3: Add Variable-Sized Unboxed Data

