
Lecture 2: Lexical Analysis

Last modified: Thu Mar 8 15:13:16 2018 CS164: Lecture #2 1

Review: Front End Compiler Structure

Source
code

Lexical
Analysis

Tokens
Parsing

AST

Semantic
AnalysisDecorated

AST

We are here

• A sequence of translations that each:

– Filter out errors

– Remove or put aside extraneous information

– Make data more conveniently accessible.

• Strategy: find tools that partially automate this procedure.

• For lexical analysis: convert description that uses patterns (ex-
tended regular expressions) into program.

Last modified: Thu Mar 8 15:13:16 2018 CS164: Lecture #2 2

Tokens

• Token consists of syntactic category (like “noun” or “adjective”) plus
semantic information (like a particular name).

• Parsing (the “customer”) only needs syntactic category:

– “Joe went to the store” and “Harry went to the beach” have same
grammatical structure.

• For programming, semantic information might be text of identifier
or numeral.

• Example from Notes:

if(i== j)

z = 0; /* No work needed */

else

z= 1;

=⇒

IF, LPAR, ID("i"), EQUALS,

ID("j"), RPAR, ID("z"),

ASSIGN, INTLIT("0"), SEMI,

ELSE, ID("z"), ASSIGN,

INTLIT("1"), SEMI

Last modified: Thu Mar 8 15:13:16 2018 CS164: Lecture #2 3

Classical Regular Expressions

• Regular expressions denote formal languages, which are sets of strings
(of symbols from some alphabet).

• Appropriate since internal structure not all that complex yet.

• Expression R denotes language L(R):

– L(ǫ) = L("") = {""}.

– If c is a character, L(c) = {"c"}.

– If R1, R2 are r.e.s, L(R1R2) = {x1x2|x1 ∈ L(R1), x2 ∈ L(R2)}.

– L(R1|R2) = L(R1) ∪ L(R2).

– L(R∗) = L(ǫ) ∪ L(R) ∪ L(R R) ∪ · · ·.

– L((R)) = L(R).

• Precedence is ‘*’ (highest), concatenation, union (lowest). Parenthe-
ses also provide grouping.

Last modified: Thu Mar 8 15:13:16 2018 CS164: Lecture #2 4

Abbreviations

• Character lists, such as [abcf-mxy] in Java, Perl, or Python.

• Negative character lists, such as [^aeiou].

• Character classes such as . (dot), \d, \s in Java, Perl, Python.

• L(R+) = L(RR∗).

• L(R?) = L(ǫ|R).

Last modified: Thu Mar 8 15:13:16 2018 CS164: Lecture #2 5

Extensions

• “Capture” parenthesized expressions:

– After m = re.match(r’\s*(\d+)\s*,\s*(\d+)\s*’, ’12,34’), have
m.group(1) == ’12’, m.group(2) == ’34’.

• Lazy vs. greedy quantifiers:

– re.match(r’(\d+).*’, ’1234ab’) makes group(1) match ’1234’.

– re.match(r’(\d+?).*’, ’1234ab’) makes group(1) match ’1’.

• Boundaries:

– re.search(r’(^abc|qef)’, L) matches abc only at beginning of
string, and qef anywhere.

– re.search(r’(?m)(^abc|qef)’, L) matches abc only at begin-
ning of string or of any line.

– re.search(r’rowr(?=baz)’, L) matches an instance of ‘rowr’,
but only if ‘baz’ follows (does not match baz).

– re.search(r’(?<=rowr)baz’, L) matches an instance of ‘baz’,
but only if immediately preceded by ‘rowr’ (does not match rowr).

• Non-linear patterns: re.search(r’(\S+),\1’, L) matches a word
followed by the same word after a comma.

Last modified: Thu Mar 8 15:13:16 2018 CS164: Lecture #2 6

An Example

SL/1 “language”:

+ - * / = ; , () < >

>= <= -->

if def else fi while

identifiers
decimal numerals

Comments start with # and go to end of line.
(Review of programs in Chapter 2 of Course Notes.)

Last modified: Thu Mar 8 15:13:16 2018 CS164: Lecture #2 7

Problems

• Decimal numerals in C, Java.

• All numerals in C, Java.

• Floating-point numerals.

• Identifiers in C, Java.

• Identifiers in Ada.

• Comments in C++, Java.

• XHTML markups.

• Python bracketing.

Last modified: Thu Mar 8 15:13:16 2018 CS164: Lecture #2 8

http://inst.eecs.berkeley.edu/~cs164/fa13/lectures/lecture2

Some Problem Solutions

• Decimal numerals in C, Java: 0|[1-9][0-9]*

• All numerals in C, Java: [1-9][0-9]+|0[xX][0-9a-fA-F]+|0[0-7]*

• Floating-point numerals: (\d+\.\d*|\d*\.\d+)([eE][-+]?\d+)?|[0-9]+[eE][-+

• Identifiers in C, Java. (ASCII only, no dollar signs):
[a-zA-Z][a-zA-Z 0-9]*

• Identifiers in Ada: [a-zA-Z]([a-zA-Z 0-9]| [a-zA-Z0-9])*

• Comments in C++, Java: //.*|/*([^*]|*[^/])**+/
or, using some extended features: //.*|/*(.|\n)*?*/

• Python bracketing: Nothing much you can do here, except to note
blanks at the beginnings of lines and to do some programming in the
actions.

Last modified: Thu Mar 8 15:13:16 2018 CS164: Lecture #2 9

	Lecture 2: Lexical Analysis
	Review: Front End Compiler Structure
	Tokens
	Classical Regular Expressions
	Abbreviations
	Extensions
	An Example
	Problems
	Some Problem Solutions

