Lecture \#17: Typing Examples for ChocoPy

- Today, we'll adapt the notation from Friday to ChocoPy.
- In order to cover all constructs, we will need to augment the type environment with some other information.
- Our type assertions will have one of the forms

$$
O, M, C, R \vdash e: T \quad \text { or } \quad O, M, C, R \vdash s
$$

depending on whether we are typing expressions or statements, where

- O is a type environment as in the last lecture.
- M is the member environment: $M(C, I)$ returns the type of the attribute or method named I in class C.
- C is the enclosing class.
- R is the type to be returned by the enclosing function or method.
- Hence the the type assertions above means

The expression e type checks and has type T, or the construct s is correctly typed, given that O, M, C, R are the type environment, member environment, enclosing class, and expected return type.

Variable Access

- The type environment tells us about variables' types.

$$
\frac{O(i d)=T, \text { where } T \text { is not a function type. }}{O, M, C, R \vdash i d: T} \text { [VAR-READ] }
$$

- We only apply this rule when an identifier appears as an expression or the left side of an assignment.
- The provision that T not be a function type reflects the fact that in ChocoPy, functions are not first-class values. Their identifiers are handled elsewhere.

Variable Assignment

- Variable assignment is closely related:

$$
\begin{aligned}
& O, M, C, R \vdash e_{0}: T_{0} \\
& O, M, C, R \vdash e_{1}: T_{1} \\
& \frac{T_{1} \leq_{a} T_{0}}{O, M, C, R \vdash e_{0}=e_{1}}[\text { ASSIGN-STMT }]
\end{aligned}
$$

- The final line lacks $a^{\prime}: T$ ' annotation because an assignment, being a statement, does not produce a value and therefore does not have a type.
- We are making use of the \leq_{a} relation between types: assignment compatibility.
- This is a slight tweak on the ChocoPy type hierarchy: $T_{1} \leq_{a} T_{2}$ iff
- $T_{1} \leq T_{2}$ (i.e., ordinary subtyping).
- T_{1} is <None> and T_{2} is not int, bool, or str.
- T_{2} is a list type [T] and T_{1} is <Empty>.
- T_{2} is the list type [T] and T_{1} is [<None>], where <None> $\leq_{a} T$.
- Here, <Empty> is the type of the empty list, and <None> is the type of None.

Variable Initialization

- This is obviously closely related to assignment.

$$
\begin{gathered}
O(i d)=T \\
O, M, C, R \vdash e_{1}: T_{1} \\
\frac{T_{1} \leq_{a} T}{O, M, C, R \vdash i d: T=e_{1}}[\mathrm{VAR-INIT}]
\end{gathered}
$$

- This is declaration and, like a statement, does not produce a value. The ' $:$ ' here is part of ChocoPy syntax, and not part of a type rule.

Attributes (instance variables)

- The rules are closely related to VAR-READ and ASSIGN-STMT.
- But we refer to M to get the types.

$$
\begin{aligned}
& O, M, C, R \vdash e_{0}: T_{0} \\
& \frac{M\left(T_{0}, i d\right)=T}{O, M, C, R \vdash e_{0} \cdot i d: T}
\end{aligned}
$$

$$
\begin{gathered}
M(C, i d)=T \\
O, M, C, R \vdash e_{1}: T_{1} \\
\frac{T_{1} \leq{ }_{a} T}{O, M, C, R \vdash i d: T=e_{1}} \quad[\mathrm{ATTR}-\mathrm{INIT}]
\end{gathered}
$$

Some Obvious Ones

$$
\overline{O, M, C, R \vdash \mathrm{pass}}[\mathrm{PASS}]
$$

$\overline{O, M, C, R \vdash \text { False : bool }}$ [BOOL-FALSE] $\overline{O, M, C, R \vdash \text { True : bool }}$ [BOOL-TRUE]
$\frac{i \text { is an integer literal }}{O, M, C, R \vdash i: \text { int }}$ [INT]
$\frac{s \text { is a string literal }}{O, M, C, R \vdash s: s t r} \quad[\mathrm{STR}]$
$\overline{O, M, C, R \vdash \text { None : <None> }}$ [NONE]
$\overline{O, M, C, R \vdash[]:<E m p t y>}[\mathrm{NIL}]$

Some Binary Operators

$$
\begin{aligned}
& O, M, C, R \vdash e_{1}: \mathrm{int} \\
& O, M, C, R \vdash e_{2}: \mathrm{int} \\
& \frac{o p \in\{+,-, *, / /, \%\}}{O, M, C, R \vdash e_{1} o p e_{2}: \mathrm{int}} \quad[\mathrm{ARITH}] \\
& \\
& O, M, C, R \vdash e_{1}: \mathrm{str} \\
& \frac{O, M, C, R \vdash e_{2}: s t r}{O, M, C, R \vdash e_{1}+e_{2}: s t r}
\end{aligned} \quad[\mathrm{STR}-\mathrm{CONCAT}]
$$

- The arith and str-concat rules illustrate that the hypotheses (above the line) determine the applicability of a rule to a given situation. So 3+2 is covered by the first rule, and "Hello," + " world" by the second.
- Neither rule says that (e.g.) $3+$ "Hello" is illegal.
- Instead, the point is that neither of them says it is legal, and in the absence of some applicable rule, type checking fails.

Using Least Upper Bounds: List Displays

- The empty list has a special type, assignable to other list types.

$$
\overline{O, M, C, R \vdash[]:<E m p t y>}[\mathrm{NIL}]
$$

- The type of list created by a non-empty display is the least upper bound (denoted \sqcup) of the types of its elements, where the relevant type relation is \leq_{a}, rather than pure subtype.

$$
\begin{gathered}
n \geq 1 \\
O, M, C, R \vdash e_{1}: T_{1} \\
O, M, C, R \vdash e_{2}: T_{2} \\
\vdots \\
O, M, C, R \vdash e_{n}: T_{n} \\
T=T_{1} \sqcup T_{2} \sqcup \ldots \sqcup T_{n} \\
O, M, C, R \vdash\left[e_{1}, e_{2}, \ldots, e_{n}\right]:[T]
\end{gathered} \text { [LIST-DISPLAY] }
$$

- This rule causes apparent glitches:

```
x: [object] = None
x = [3, x]
# OK
x = [3] # ERROR (why?)
```


Return

- The return statement is where the ' R ' part of type rules comes in:

$$
\begin{aligned}
& \frac{O, M, C, R \vdash e: T}{} \begin{array}{l}
T \leq_{a} R \\
O, M, C, R \vdash \text { return } e
\end{array} \text { [RETURN-E] } \\
& \frac{\left\langle\text { None }>\leq_{a} R\right.}{O, M, C, R \vdash \text { return }}[\text { RETURN }]
\end{aligned}
$$

- The second rule forbids programs like this:

```
def f() -> int:
    return
```

Since None may not be assigned to an int value.

- We don't deal here with an implicit return of None from a function returning int, as happens when there is no return statement along some path. Instead, we can deal with that by inserting a return at the end of any function with a path that does not contain a return.

Function Types

- The ChocoPy reference uses a somewhat nonstandard notation for function types in order to carry around a bit more information that's useful elsewhere.
- Here, I'll revise it a bit to make the traditional function type signature itself clear:

$$
\left\{T_{1} \times T_{2} \times \ldots \times T_{n} \rightarrow T_{0} ; x_{1}, x_{2}, \ldots, x_{n} ; v_{1}: T_{1}^{\prime}, v_{2}: T_{2}^{\prime}, \ldots, v_{m}: T_{m}{ }^{\prime}\right\}
$$

will denote a function whose

- type is $T_{1} \times T_{2} \times \ldots \times T_{n} \rightarrow T_{0}$,
- formal parameters names are x_{i}, and
- local names (local variables and nested functions) are v_{j} with types $T_{j}{ }^{\prime}$.

Function Calls

$$
\begin{gathered}
O, M, C, R \vdash e_{1}: T_{1}^{\prime \prime} \\
\vdots \\
O, M, C, R \vdash e_{n}: T_{n}^{\prime \prime} \\
n \geq 0 \\
O(f)=\left\{T_{1} \times \ldots \times T_{n} \rightarrow T_{0} ; x_{1}, x_{2}, \ldots, x_{n} ; v_{1}: T_{1}^{\prime}, \ldots, v_{m}: T_{m}^{\prime}\right\} \\
\forall 1 \leq i \leq n: T_{i}^{\prime \prime} \leq_{a} T_{i} \\
\hline O, M, C, R \vdash f\left(e_{1}, e_{2}, \ldots, e_{n}\right): T_{0}
\end{gathered} \text { [INVOKE] }
$$

- Dispatching calls on class members are the same, except that we get the type from M rather than O :

$$
\begin{gathered}
O, M, C, R \vdash e_{1}: T_{1}^{\prime \prime} \\
\vdots \\
O, M, C, R \vdash e_{n}: T_{n}^{\prime \prime} \\
n \geq 1 \\
M\left(T_{1}^{\prime \prime}, f\right)=\left\{T_{1} \times \ldots \times T_{n} \rightarrow T_{0} ; x_{1}, x_{2}, \ldots, x_{n} ; v_{1}: T_{1}^{\prime}, \ldots, v_{m}: T_{m}{ }^{\prime}\right\} \\
T_{1}^{\prime \prime} \leq_{a} T_{1} \\
\forall 1 \leq 2 \leq n: T_{i}^{\prime \prime} \leq_{a} T_{i} \\
\hline O, M, C, R \vdash e_{1} \cdot f\left(e_{2}, \ldots, e_{n}\right): T_{0}
\end{gathered}
$$

Function Definition

$$
\begin{gathered}
T= \begin{cases}T_{0}, & \text { if }->\text { is present, } \\
\text { <None> }, \text { otherwise. }\end{cases} \\
O(f)=\left\{T_{1} \times \ldots \times T_{n} \rightarrow T_{0} ; x_{1}, x_{2}, \ldots, x_{n} ; v_{1}: T_{1}{ }^{\prime}, \ldots, v_{m}: T_{m}{ }^{\prime}\right\} \\
\frac{n \geq 0 \quad m \geq 0}{} \quad \begin{array}{c}
O\left[T_{1} / x_{1}\right] \ldots\left[T_{n} / x_{n}\right]\left[T_{1}^{\prime} / v_{1}\right] \ldots\left[T_{m}^{\prime} / v_{m}\right], M, C, T \vdash b \\
O, M, C, R \vdash \operatorname{def} f\left(x_{1}: T_{1}, \ldots, x_{n}: T_{n}\right)\left[->T_{0}\right]^{?}: b
\end{array} \text { [FUNC-DEF] }
\end{gathered}
$$

- So the definition as a whole type checks if it gives the right types for parameters and locals, and...
- the body type checks after substituting the indicated types for the formal parameter and local variable and function names.
- Here, we finally do something other than passing the R parameter in. When type-checking the body, R becomes the return type, allowing us to type-check return statements correctly (see the last hypothesis).

Getting Things Started

- Before applying these rules, we gather up definitions of variables, functions, and classes in order to get the initial O and C.
- Also, the global definitions are part of this initial O and M :

$$
\begin{aligned}
O(\text { len }) & =\{\text { object } \rightarrow \text { int } ; \text { arg }\} \\
O(\text { print }) & =\{\text { object } \rightarrow\langle\text { None }\rangle \text { arg }\} \\
O(\text { input }) & =\{\rightarrow \text { str }\} \\
M(\text { object }, \ldots \text { init_-) }) & =\{\text { object } \rightarrow\langle\text { None }\rangle ; \text { sel }\}\} \\
M(\text { str, }\} \text { init_-) } & =\{\text { object } \rightarrow\langle\text { None }\rangle \text { self }\} \\
M(\text { int },- \text { init_--) }) & =\{\text { object } \rightarrow\langle\text { None }\rangle \text { sel }\} \\
M(\text { bool }, \ldots \text { init_- }) & =\{\text { object } \rightarrow\langle\text { None }\rangle \text { self }\}
\end{aligned}
$$

- And the whole program is then

$$
\left.\frac{O, M, \perp, \perp \vdash \text { program }}{\vdash \text { program }} \text { [PROGRAM }\right]
$$

where \perp ("bottom") means something undefined.

