Lecture #17: Typing Examples for ChocoPy

e Today, we'll adapt the notation from Friday to ChocoPy.

e In order to cover all constructs, we will need to augment the type
environment with some other information.

e Our type assertions will have one of the forms
O,M,C,RFe:T or O,M,C,RFs
depending on whether we are typing expressions or statements, where

- O is a type environment as in the last lecture.

- M is the member environment: M (C,I) returns the type of the
attribute or method named I in class C.

- C'is the enclosing class.
- R is the type to be returned by the enclosing function or method.
e Hence the the type assertions above means
The expression e type checks and has type T', or the construct
s is correctly typed, given that O, M, C, R are the type envi-

ronment, member environment, enclosing class, and expected
return type.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 1

Variable Access

e The type environment tells us about variables’ types.

O(id) = T, where T is not a function type.
O,M,C,RFid: T

[VAR-READ]

e We only apply this rule when an identifier appears as an expression
or the left side of an assignment.

e The provision that 7" not be a function type reflects the fact that in
ChocoPy, functions are not first-class values. Their identifiers are
handled elsewhere.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 2

Variable Assignment

e Variable assignment is closely related:
O,M,C,R}—eo : TQ
O,M,C RFe T,
Tl Sa TU
O,]\f,C,R'_ €)= €1
e The final line lacks a : T" annotation because an assignment, being a
statement, does not produce a value and therefore does not have a
type.
e We are making use of the <, relation between types: assignment
compatibility.
e This is a slight tweak on the ChocoPy type hierarchy: 71 <, 15 iff

[ASSIGN-STMT]

- Ty < T (i.e., ordinary subtyping).
- T} is <None> and T5 is not int, bool, or str.
- Ty is alist type [T] and T; is <Empty>.
- T; is the list type [T] and T} is [<None>], where <None> <, T.
e Here, <Empty> is the type of the empty list, and <None> is the type

of None.
Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 3

Variable Initialization

e This is obviously closely related to assignment.
O(id) =T
O,]\/[,C,R}_ (S T1
Tl Sa T
O,M,C RFid: T=¢e

[VAR-INIT]

e This is declaration and, like a statement, does not produce a value.
The "' here is part of ChocoPy syntax, and not part of a type rule.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 4

Attributes (instance variables)

e The rules are closely related to VAR-READ and ASSIGN-STMT.

e But we refer to M to get the types.

O,M,C,R+eq: T
M(Ty,id) =T

O,M,C.RFepid:T [ATTR'READ]

M(C,id)=T
OMC RbFe T
"<, T
OM,C RFid: T =e

[ATTR-INIT]

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 5

Some Obvious Ones

[PASS]

O,M,C, R} pass

[BOOL-FALSE]

O,M,C, R+ False : bool O,M,C, R+ True : bool

i is an integer literal s is a string literal

[STR]

O,M,C,RFi:int [iN] O,M,C,RF s: str

[NONE]

O, M,C, RF None : <None> O,M,C,RF []:<Empty>

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 6

[NIL

[BOOL-TRUE]

]

Some Binary Operators

O,M,C,Rt‘ e :int

O,M,C,R}‘ ey :int

0p€{+’7’*7//>%}
O,M,C,Rt ejop ey :int

[ARITH]

O,M,C,RF ey :str
O,M,C,RF es: str

STR-CONCAT
O,M,C,RF e +ey: str [}

e The ARITH and STR-CONCAT rules illustrate that the hypotheses
(above the line) determine the applicability of a rule to a given situ-
ation. So 3+2 is covered by the first rule, and "Hello," + " world"
by the second.

e Neither rule says that (e.g.) 3 + "Hello" is illegal.

e Instead, the point is that neither of them says it is legal, and in the
absence of some applicable rule, type checking fails.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 7

Using Least Upper Bounds: List Displays

e The empty list has a special type, assignable o other list types.

[N1L]

O,M,C,RF []:<Empty>

e The type of list created by a non-empty display is the least upper
bound (denoted L) of the types of its elements, where the relevant
type relation is <,, rather than pure subtype.

n>1
O,M,C RFe T
O,M,C.RFey:Th

O,M,C,Rte,:T,
T=T,UTyU...UT,

LIST-DISPLAY
O,M,C,RF [ey,eg,...,e,] :[T] [LisT

e This rule causes apparent glitches:

x: [object] = None
x = [3, x] # OK
X (3] # ERROR (why?)

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 8

Return

e The return statement is where the 'R’ part of type rules comes in:

O,M,C,RFe:T
T<.R
O,M,C,R}F returne

[RETURN-E

<None> <, R
O,M,C, RF return

[RETURN

e The second rule forbids programs like this:

def f() -> int:
return

Since None may not be assigned to an int value.

e We don't deal here with an implicit return of None from a function
returning int, as happens when there is no return statement along
some path. Instead, we can deal with that by inserting a return at
the end of any function with a path that does not contain a return.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 9

Function Types

e The ChocoPy reference uses a somewhat nonstandard notation for
function types in order to carry around a bit more information that's
useful elsewhere.

e Here, I'll revise it a bit to make the traditional function type signa-
ture itself clear:

{T1 X Ty x...xT, %T();.’L'l,.%'g,...,.%'n;vl : Tll,vg : TQ’,...,U,,L : Tm/}
will denote a function whose

-typeis T\ x Ty x ... x T, = Ty,
- formal parameters names are z;, and

- local names (local variables and nested functions) are v; with
types T;'.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 10

Function Calls
O,M,C,Rte :T"

O,M,C,RFe,:T"
n >0
O(f):{Tl X XﬂL%TUQ,l‘lvaa--wxn;vl:Tllw--va:T’m,}
Vi<i<n:T!<,T,

INVOKE
O,M,C,RF f(er,eq,...,en): To [

e Dispatching calls on class members are the same, except that we
get the type from M rather than O:

O,M,C,Rl_eliT/{

O,M,C,Rte,:T"
n>1
MY fy={Ty x...x T, = To;x1,29, .. .,xp;v1 : T, vy T'}
TI{SGTI
VI<2<n:T!<.T
O,M,C,Rl_el.f<€2,...,€n)ZT()

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 11

[DISPATCH]

Function Definition

| To, if -> is present,
<None>, otherwise.
Ofy={T1 x ... x T, = To;x1, 29, ..., xp;v1 : Ty oo vy Ty}
n>0 m >0
O|Ty/x1] ... [Tz,)T Jva] ... [T), Jom), M,C, T + b
O,M,C,RF def f(x1:T,...,2,:Tp) [-> To] :b

e So the definition as a whole type checks if it gives the right types
for parameters and locals, and...

e the body type checks after substituting the indicated types for the
formal parameter and local variable and function names.

e Here, we finally do something other than passing the R parameter
in. When type-checking the body, R becomes the return type, al-
lowing us to type-check return statements correctly (see the last
hypothesis).

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 12

[FUNC-DEF]

Getting Things Started

e Before applying these rules, we gather up definitions of variables,
functions, and classes in order to get the initial O and C.

e Also, the global definitions are part of this initial O and M:

O(len) = {object — int; arg}

O(print
O(input {— str}

M (object, _init_

M (int, _init_
M (bool, _init_

= {object — <None>;
e And the whole program is then

O,M, L, 1L F program
F program

where L ("bottom") means something undefined.

Last modified: Thu Apr 4 14:34:05 2019

{object — <None>;

) =

) =

) = {object — <None>;
M (str, _init__) = {object — <None>;

) = {object — <None>;

)=

arg}

self}
self}
self}
self}

[PROGRAM

CS164: Lecture #17 13

	Lecture #17: Typing Examples for ChocoPy
	Variable Access
	Variable Assignment
	Variable Initialization
	Attributes (instance variables)
	Some Obvious Ones
	Some Binary Operators
	Using Least Upper Bounds: List Displays
	Return
	Function Types
	Function Calls
	Function Definition
	Getting Things Started

