
Lecture #17: Typing Examples for ChocoPy

• Today, we’ll adapt the notation from Friday to ChocoPy.

• In order to cover all constructs, we will need to augment the type
environment with some other information.

• Our type assertions will have one of the forms

O,M,C,R ⊢ e : T or O,M,C,R ⊢ s

depending on whether we are typing expressions or statements, where

– O is a type environment as in the last lecture.

– M is the member environment: M(C, I) returns the type of the
attribute or method named I in class C .

– C is the enclosing class.

– R is the type to be returned by the enclosing function or method.

• Hence the the type assertions above means

The expression e type checks and has type T , or the construct
s is correctly typed, given that O,M,C,R are the type envi-
ronment, member environment, enclosing class, and expected
return type.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 1

Variable Access

• The type environment tells us about variables’ types.

O(id) = T,where T is not a function type.

O,M,C,R ⊢ id : T
[var-read]

• We only apply this rule when an identifier appears as an expression
or the left side of an assignment.

• The provision that T not be a function type reflects the fact that in
ChocoPy, functions are not first-class values. Their identifiers are
handled elsewhere.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 2

Variable Assignment

• Variable assignment is closely related:

O,M,C,R ⊢ e0 : T0

O,M,C,R ⊢ e1 : T1

T1 ≤a T0

O,M,C,R ⊢ e0 = e1
[assign-stmt]

• The final line lacks a ‘: T ’ annotation because an assignment, being a
statement, does not produce a value and therefore does not have a
type.

• We are making use of the ≤a relation between types: assignment
compatibility.

• This is a slight tweak on the ChocoPy type hierarchy: T1 ≤a T2 iff

– T1 ≤ T2 (i.e., ordinary subtyping).

– T1 is <None> and T2 is not int, bool, or str.

– T2 is a list type [T] and T1 is <Empty>.

– T2 is the list type [T] and T1 is [<None>], where <None> ≤a T .

• Here, <Empty> is the type of the empty list, and <None> is the type
of None.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 3

Variable Initialization

• This is obviously closely related to assignment.

O(id) = T
O,M,C,R ⊢ e1 : T1

T1 ≤a T

O,M,C,R ⊢ id: T = e1
[var-init]

• This is declaration and, like a statement, does not produce a value.
The ‘:’ here is part of ChocoPy syntax, and not part of a type rule.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 4



Attributes (instance variables)

• The rules are closely related to var-read and assign-stmt.

• But we refer to M to get the types.

O,M,C,R ⊢ e0 : T0

M(T0, id) = T

O,M,C,R ⊢ e0.id : T
[attr-read]

M(C, id) = T
O,M,C,R ⊢ e1 : T1

T1 ≤a T

O,M,C,R ⊢ id: T = e1
[attr-init]

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 5

Some Obvious Ones

O,M,C,R ⊢ pass
[pass]

O,M,C,R ⊢ False : bool
[bool-false]

O,M,C,R ⊢ True : bool
[bool-true]

i is an integer literal

O,M,C,R ⊢ i : int
[int]

s is a string literal

O,M,C,R ⊢ s : str
[str]

O,M,C,R ⊢ None : <None>
[none]

O,M,C,R ⊢ [] : <Empty>
[nil]

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 6

Some Binary Operators

O,M,C,R ⊢ e1 : int
O,M,C,R ⊢ e2 : int
op ∈ {+,−, ∗, //,%}

O,M,C,R ⊢ e1op e2 : int
[arith]

O,M,C,R ⊢ e1 : str
O,M,C,R ⊢ e2 : str

O,M,C,R ⊢ e1 + e2 : str
[str-concat]

• The arith and str-concat rules illustrate that the hypotheses
(above the line) determine the applicability of a rule to a given situ-
ation. So 3+2 is covered by the first rule, and "Hello," + " world"

by the second.

• Neither rule says that (e.g.) 3 + "Hello" is illegal.

• Instead, the point is that neither of them says it is legal, and in the
absence of some applicable rule, type checking fails.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 7

Using Least Upper Bounds: List Displays

• The empty list has a special type, assignable to other list types.

O,M,C,R ⊢ [] : <Empty>
[nil]

• The type of list created by a non-empty display is the least upper
bound (denoted ⊔) of the types of its elements, where the relevant
type relation is ≤a, rather than pure subtype.

n ≥ 1
O,M,C,R ⊢ e1 : T1

O,M,C,R ⊢ e2 : T2

...
O,M,C,R ⊢ en : Tn

T = T1 ⊔ T2 ⊔ . . . ⊔ Tn

O,M,C,R ⊢ [e1, e2, . . . , en] : [T ]
[list-display]

• This rule causes apparent glitches:

x: [object] = None

x = [3, x] # OK

x = [3] # ERROR (why?)

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 8



Return

• The return statement is where the ‘R’ part of type rules comes in:

O,M,C,R ⊢ e : T
T ≤a R

O,M,C,R ⊢ return e
[return-e]

<None> ≤a R

O,M,C,R ⊢ return
[return]

• The second rule forbids programs like this:

def f() -> int:

return

Since None may not be assigned to an int value.

• We don’t deal here with an implicit return of None from a function
returning int, as happens when there is no return statement along
some path. Instead, we can deal with that by inserting a return at
the end of any function with a path that does not contain a return.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 9

Function Types

• The ChocoPy reference uses a somewhat nonstandard notation for
function types in order to carry around a bit more information that’s
useful elsewhere.

• Here, I’ll revise it a bit to make the traditional function type signa-
ture itself clear:

{T1 × T2 × . . .× Tn → T0; x1, x2, . . . , xn; v1 : T1
′, v2 : T2

′, . . . , vm : Tm
′}

will denote a function whose

– type is T1 × T2 × . . .× Tn → T0,

– formal parameters names are xi, and

– local names (local variables and nested functions) are vj with
types Tj

′.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 10

Function Calls

O,M,C,R ⊢ e1 : T
′′
1

...
O,M,C,R ⊢ en : T

′′
n

n ≥ 0
O(f) = {T1 × . . .× Tn → T0;x1, x2, . . . , xn; v1 : T1

′, . . . , vm : Tm
′}

∀1 ≤ i ≤ n : T ′′
i ≤a Ti

O,M,C,R ⊢ f(e1, e2, . . . , en) : T0

[invoke]

• Dispatching calls on class members are the same, except that we
get the type from M rather than O:

O,M,C,R ⊢ e1 : T
′′
1

...
O,M,C,R ⊢ en : T

′′
n

n ≥ 1
M(T ′′

1, f) = {T1 × . . .× Tn → T0;x1, x2, . . . , xn; v1 : T1
′, . . . , vm : Tm

′}
T ′′

1 ≤a T1

∀1 ≤ 2 ≤ n : T ′′
i ≤a Ti

O,M,C,R ⊢ e1.f(e2, . . . , en) : T0

[dispatch]

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 11

Function Definition

T =















T0, if -> is present,
<None>, otherwise.

O(f) = {T1 × . . .× Tn → T0;x1, x2, . . . , xn; v1 : T1
′, . . . , vm : Tm

′}
n ≥ 0 m ≥ 0

O[T1/x1] . . . [Tn/xn][T
′
1/v1] . . . [T

′
m/vm],M,C, T ⊢ b

O,M,C,R ⊢ def f(x1:T1, . . . , xn:Tn) J-> T0K
?:b

[func-def]

• So the definition as a whole type checks if it gives the right types
for parameters and locals, and. . .

• the body type checks after substituting the indicated types for the
formal parameter and local variable and function names.

• Here, we finally do something other than passing the R parameter
in. When type-checking the body, R becomes the return type, al-
lowing us to type-check return statements correctly (see the last
hypothesis).

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 12



Getting Things Started

• Before applying these rules, we gather up definitions of variables,
functions, and classes in order to get the initial O and C .

• Also, the global definitions are part of this initial O and M :

O(len) = {object → int; arg}

O(print) = {object → <None>; arg}

O(input) = {→ str}

M(object, init ) = {object → <None>; self}

M(str, init ) = {object → <None>; self}

M(int, init ) = {object → <None>; self}

M(bool, init ) = {object → <None>; self}

• And the whole program is then

O,M,⊥,⊥ ⊢ program

⊢ program
[program]

where ⊥ (“bottom”) means something undefined.

Last modified: Thu Apr 4 14:34:05 2019 CS164: Lecture #17 13


	Lecture #17: Typing Examples for ChocoPy
	Variable Access
	Variable Assignment
	Variable Initialization
	Attributes (instance variables)
	Some Obvious Ones
	Some Binary Operators
	Using Least Upper Bounds: List Displays
	Return
	Function Types
	Function Calls
	Function Definition
	Getting Things Started

