
Lecture #16: Types1

1From material by G. Necula and P. Hilfinger

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 1



“Type Wars”

• Dynamic typing proponents say:

– Static type systems are restrictive; can require more work to do
reasonable things.

– Rapid prototyping easier in a dynamic type system.

– Use duck typing: define types of things by what operations they
respond to (“if it walks like a duck and quacks like a duck, it’s a
duck”).

• Static typing proponents say:

– Static checking catches many programming errors at compile time.

– Avoids overhead of runtime type checks.

– Use various devices to recover the flexibility lost by “going static:”
subtyping, coercions, and type parameterization.

– Of course, each such wrinkle introduces its own complications.

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 2



Example: Sort

Sorting in Python vs. Java:

def sort(v, lt = operator.lt):

for i in range(1, len(v)):

x = v[i]

for j in range(i - 1, 0, -1):

if lt(x, v[j]):

...

public static <T>

void sort(T[] v,

Comparator<? super T> comp) {

for (int i = 1, i < a.length; i += 1) {

x = v[i];

for (int j = i - 1; j > 0; j -= 1) {

if (comp.compare(x, v[j]) < 0) ...

• In Python, if v is not something that defines __len__, __getitem__,
etc., or x does not define __lt__, we find out only at execution.

• In Java, one finds out earlier, but must write quite a bit more.

•Which makes all assumptions explicit, but isn’t immediately clear.
Furthermore, requires that v be a primitive array, not ArrayList.

• Interestingly, the Java library also contains:

public static void sort(Object[] v) {

...

if (((Comparable) x).compareTo(v[j]) < 0) { ...

• To give a more Python-like dynamically checked version.

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 3



Using Subtypes

• In languages such as Java, can define types (classes) either to

– Implement a type, or

– Define the operations on a family of types without (completely)
implementing them.

• Hence, relaxes static typing a bit: we may know that something is a
Y without knowing precisely which subtype it has.

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 4



Implicit Coercions

• In Java, can write

int x = ’c’;

float y = x;

• But relationship between char and int, or int and float not usually
called subtyping, but rather conversion (or coercion).

• Such implicit coercions avoid cumbersome casting operations.

• Might cause a change of value or representation,

• But usually, such coercions allowed implicitly only if type coerced to
contains all the values of the type coerced from (a widening coer-
cion).

• Inverses of widening coercions, which typically lose information (e.g.,
int−→char), are known as narrowing coercions. and typically re-
quired to be explicit.

• int−→float a traditional exception (implicit, but can lose informa-
tion and is neither a strict widening nor a strict narrowing.)

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 5



Coercion Examples

Object x = ...; String y = ...;

int a = ...; short b = 42;

x = y; a = b; // OK

y = x; b = a; // ERRORS

x = (Object) y; // OK

a = (int) b; // OK

y = (String) x; // OK but may cause exception

b = (short) a; // OK but may lose information

• Possibility of implicit coercion complicates type-matching rules.

• For example, in C++, if x has type const T* (pointer to constant T),
can write x = y whether y has type const T* or T*.

• However, given the two declarations

void f(const T* z);

void f(T* z);

the call f(y) calls the second one if y is a T*, but would call the first
one if the second f were not declared.

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 6



Type Inference

• Types of expressions and parameters need not be explicit to have
static typing. With the right rules, might infer their types.

• The appropriate formalism for type checking is logical rules of in-
ference having the form

If Hypothesis is true, then Conclusion is true

• For type checking, this might become rules like

If we can infer that E1 and E2 have types T1 and T2, then we can
infer that E3 has type T3.

• The standard notation used in scholarly work looks like this:

⊢ E1 : T1, ⊢ E2 : T2

⊢ E3 : T3

where A ⊢ B means “B may be inferred from A.” and ⊢ B means
simply “B may be inferred.”

• Given proper notation, easy to read (with practice), so easy to check
that the rules are accurate.

• Can even be mechanically translated into programs.

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 7



Soundness

•We’ll say that our rules are sound if

– Whenever rules show that e:t, e always evaluates to a value of
type t

•We only want sound rules,

• But some sound rules are better than others; here’s one that’s un-
necessarily timid: Let E stand for any expression, then

⊢ E : int

⊢ [E] : [int]

meaning that if we can show E is of type int, we can conclude that
[E] is of type list of int.

• Better simply to say that if T stands for some type, then

⊢ E : T

⊢ [E] : [T ]

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 8



Example: A Few Rules for Java

⊢ X : boolean

⊢ !X : boolean

⊢ E : boolean ⊢ S : void

⊢ while(E,S) : void

⊢ X : T

⊢ X : void

• The last rule describes what is known as voiding: any expression may
appear in a context that requires no value (if syntactically allowed).

• Thus, one can write someList.add(x) as a standalone statement,
even though .add returns a boolean value.

• Some languages (e.g., Fortran and Ada) do not have this rule.

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 9



The Type Environment

•What is the type of a variable instance? E.g., how do you show that
⊢ x : int? for variable x.

• Ans: You can’t, in general, without more information.

•We need a hypothesis of the form “we are in the scope of a decla-
ration of x with type T.”

• A type environment gives types for free names: a mapping from
identifiers to types.

• [A variable is free in an expression if the expression contains an
occurrence of the identifier that refers to a declaration outside
the expression.

– In the expression x, the variable x is free

– In lambda x: x + y only y is free (Python).

– In map(lambda x: g(x,y), x), x, y, map, and g are free.]

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 10



Notation for Type Environment

•We’ll take the notation O ⊢ E : T to mean “E may be inferred to
have type T in the type environment O.”

• Such a type environment maps names to types, e.g., O(x) = int.

•We’ll define the notation “O[T/y]” to refer to a modified type envi-
ronment:

O[T/y](x) =















T, if x is the identifier y.
O(x), otherwise.

Examples:

O ⊢ X : boolean

O ⊢ !X : boolean

O ⊢ E : boolean O ⊢ S : void

O ⊢ while(E,S) : void

O ⊢ X : T

O ⊢ X : void

O ⊢ E1 : int O ⊢ E2 : int

O ⊢ E1 + E2 : int O ⊢ I : int

(where I is an integer literal and O is a type environment)

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 11



Example: lambda (Python)

•We may describe the type of a lambda expression with a rule like
this:

O[D/X ] ⊢ E1 : T

O ⊢ lambda X: E1 : D→ T

• The notation D → T is standard mathematical notation for the set
of functions from D to T .

• The rule above therefore,

– “If we can infer that E1 has type T in a type environment modi-
fying O so that X has type D,

– Then we can infer that lambda X: E1 has the function type D →
T assuming just the assertions in O.”

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 12



Example: Same Idea for ‘let’ in the Cool Language

• Cool is an object-oriented language sometimes used for the project
in this course.

• The statement let x : T0 in e1 creates a variable x with given type
T0 that is then defined throughout e1. Value is that of e1.

• Type rule:

O[T0/X ] ⊢ E1 : T1

let X : T1 in E1 : T1.

“type of let X: T0 in E1 is T1, assuming that the type of E1 would be
T1 if free instances of X were defined to have type T0”.

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 13



Example of a Rule That’s Too Conservative

• Let with initialization (also from Cool):

let x : T0← e0 in e1

• This gives the value of e1 after first evalutating e0 and using it to
initialize a new local variable x of type T0.

•What’s wrong with the following rule?

O ⊢ e0 : T0, O[T0/X ] ⊢ e1 : T1

O ⊢ let X : T0← e0 in e1 : T1.

(Hint: I said Cool was an object-oriented language).

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 14



Loosening the Rule

• Problem is that we haven’t allowed the type of the initializer ex-
pression to be subtype of T0.

• Here’s how to do that:

O ⊢ e0 : T2, T2 ≤ T0, O[T0/X ] ⊢ e1 : T1

O ⊢ let X : T0← e0 in e1 : T1.

• Still have to define subtyping (written here as ≤), but that depends
on other details of the language.

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 15



As Usual, Can Always Screw It Up

O ⊢ e0 : T2, T2 ≤ T0, O ⊢ e1 : T1

O ⊢ let X : T0← e0 in e1 : T1.

This allows incorrect programs and disallows legal ones. Examples?

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 16



Function Application

• Consider only the one-argument case (Java):

??

O ⊢ e1(e2) : T.

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 17



Function Application

• Consider only the one-argument case (Java):

O ⊢ e1 : T1→ T, O ⊢ e2 : T2, T2 ≤ T1

O ⊢ e1(e2) : T.

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 17



Conditional Expressions

• Consider:

e1 if e0 else e2

or (from C) e0 ? e1 : e2.

• The result can be value of either e1 or e2.

• The dynamic type is either e1’s or e2’s.

•We can constrain the types of e1 and e2 to be equal (as in ML):

??

O ⊢ e1 if e0 else e2 : T

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 18



Conditional Expressions

• Consider:

e1 if e0 else e2

or (from C) e0 ? e1 : e2.

• The result can be value of either e1 or e2.

• The dynamic type is either e1’s or e2’s.

•We can constrain the types of e1 and e2 to be equal (as in ML):

O ⊢ e0 : bool, O ⊢ e1 : T, O ⊢ e2 : T

O ⊢ e1 if e0 else e2 : T

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 18



Conditional Expressions

• Consider:

e1 if e0 else e2

or (from C) e0 ? e1 : e2.

• The result can be value of either e1 or e2.

• The dynamic type is either e1’s or e2’s.

•We can constrain the types of e1 and e2 to be equal (as in ML):

O ⊢ e0 : bool, O ⊢ e1 : T, O ⊢ e2 : T

O ⊢ e1 if e0 else e2 : T

• Or use the smallest supertype at least as large as both of these
types—the least upper bound (lub) (as in Chocopy):

O ⊢ e0 : bool, O ⊢ e1 : T1. O ⊢ e2 : T2,

O ⊢ e1 if e0 else e2 : lub(T1, T2)

Last modified: Sun Apr 14 17:53:22 2019 CS164: Lecture #16 18


	Lecture #16: TypesFrom material by G. Necula and P. Hilfinger
	``Type Wars''
	Example: Sort
	Using Subtypes
	Implicit Coercions
	Coercion Examples
	Type Inference
	Soundness
	Example: A Few Rules for Java
	The Type Environment
	Notation for Type Environment
	Example: lambda (Python)
	Example: Same Idea for `let' in the Cool Language
	Example of a Rule That's Too Conservative
	Loosening the Rule
	As Usual, Can Always Screw It Up
	Function Application
	Conditional Expressions

