
Lecture 15: Static Semantics: Scope and Type1

1From material by G. Necula and P. Hilfinger

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 1



Scope Rules: Use Before Definition

• Languages have taken various decisions on where scopes start.

• In Java, C++, scope of a member (field or method) includes the en-
tire class (textual uses may precede declaration).

• But scope of a local variable starts at its declaration.

• As for non-member and class declarations in C++: must write

extern int f(int); // Forward declarations

class C;

int x = f(3) // Would be illegal w/o forward decls.

void g(C* x) {

...

}

int f (int x) { ... } // Full definitions

class C { ... }

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 2



Scope Rules: Overloading

• In Java or C++ (not Python or C), can use the same name for more
than one method, as long as the number or types of parameters are
unique.

int add(int a, int b); float add(float a, float b);

• The declaration applies to the signature—name + argument types—
not just name.

• But return type not part of signature, so this won’t work:

int add (int a, int b); float add (int a, int b)

• In Ada, it will, because the return type is part of signature.

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 3



Dynamic Scoping

• Original Lisp, APL, Snobol use dynamic scoping, rather than static:

Use of a variable refers to most recently executed, and still
active, declaration of that variable.

• Makes static determination of declaration generally impossible.

• Example:

void main() { f1(); f2(); }

void f1() { int x = 10; g(); }

void f2() { String x = "hello"; f3();g(); }

void f3() { double x = 30.5; }

void g() { print(x); }

• With static scoping, illegal.

• With dynamic scoping, prints “10” and “hello”

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 4



Explicit vs. Implicit Declaration

• Java, C++ require explicit declarations of things.

• C is lenient: if you write foo(3) with no declaration of foo in scope,
C will supply one.

• Python implicitly declares variables you assign to in a function to be
local variables.

• Fortran implicitly declares any variables you use, and gives them a
type depending on their first letter.

• But in all these cases, there is a declaration as far as the compiler
is concerned.

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 5



So How Do We Annotate with Declarations?

• Idea is to recursively navigate the AST,

– in effect executing the program in simplified fashion,

– extracting information that isn’t data dependent.

• You saw it in CS61A (sort of).

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 6



Environment Diagrams and Symbol Entries

• In Scheme, executing

(set! x 7)

(define (f x) (let ((y (+ x 39))) (+ x y)))

(f 3)

would eventually give this environment at (+ x y):

global
environment

x: 7
f: . . .

x: 3 y: 42
current
environment

• Now abstract away values in favor of static type info:

#1. x: Any
#2. f: Any→Any

#3. x: Any #4. y: Any

• and voila! A data structure for mapping names to current declara-
tions: a block-structured symbol table.

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 7



Type Checking Phase

• Determines the type of each expression in the program, (each node
in the AST that corresponds to an expression)

• Finds type errors.

– Examples?

• The type rules of a language define each expression’s type and the
types required of all expressions and subexpressions.

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 8



Types and Type Systems

• A type is a set of values together with a set of operations on those
values.

• E.g., fields and methods of a Java class are meant to correspond to
values and operations.

• A language’s type system specifies which operations are valid for
which types.

• Goal of type checking is to ensure that operations are used with the
correct types, enforcing intended interpretation of values.

• Notion of “correctness” often depends on what programmer has in
mind, rather than what the representation would allow.

• Most operations are legal only for values of some types

– Doesn’t make sense to add a function pointer and an integer in C

– It does make sense to add two integers

– But both have the same assembly language implementation:

movl y, %eax; addl x, %eax

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 9



Uses of Types

• Detect errors:

– Memory errors, such as attempting to use an integer as a pointer.

– Violations of abstraction boundaries, such as using a private field
from outside a class.

• Help compilation:

– When the Python compiler sees x+y, the static part of its type
systems tells it almost nothing about types of x and y, so code
must be general.

– But during execution, the dynamic part of its type system, imple-
mented by type information in the data structures, tells it what
code to execute.

– In C, C++, Java, code sequences for x+y are smaller and faster,
because representations are known without runtime checks of
type information.

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 10



Review: Dynamic vs. Static Types

• A dynamic type attaches to an object reference or other value. It’s
a run-time notion, applicable to any language.

• The static type of an expression or variable is a constraint on the
possible dynamic types of its value, enforced at compile time.

• Language is statically typed if it enforces a “significant” set of
static type constraints.

– A matter of degree: assembly language might enforce constraint
that “all registers contain 32-bit words,” but since this allows
just about any operation, not considered static typing.

– C sort of has static typing, but rather easy to evade in practice.

– Java’s enforcement is pretty strict.

• In early type systems, dynamic type(E) = static type(E) for all ex-
pressions E , so that in all executions, E evaluates to exactly type of
value deduced by the compiler.

• Gets more complex in advanced type systems with subtyping.

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 11



Subtyping

• Define a relation X � Y on classes to say that:

An object (value) of type X could be used when one of type Y is
acceptable

or equivalently

X conforms to Y

• In Java this means that X extends Y .

• Properties:

– X � X

– X � Y if X inherits from Y .

– X � Z if X � Y and Y � Z.

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 12



Example

class A { ... }

class B extends A { ... }

class Main {

void f () {

A x; // x has static type A.

x = new A(); // x’s value has dynamic type A.

...

x = new B(); // x’s value has dynamic type B.

...

}

}

Variables, with static type A can hold values with dynamic type � A,
or in general. . .

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 13



Type Soundness

Soundness Theorem on Expressions.

∀E. dynamic type(E) � static type(E)

• Compiler uses static type(E) (call this type C).

• All operations that are valid on C are also valid on values with types
� C (e.g., attribute (field) accesses, method calls).

• Subclasses only add attributes.

• Methods may be overridden, but only with same (or compatible) sig-
nature.

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 14



Typing Options

• Statically typed: almost all type checking occurs at compilation time
(C, Java). Static type system is typically rich.

• Dynamically typed: almost all type checking occurs at program exe-
cution (Scheme, Python, Javascript, Ruby). Static type system can
be trivial.

• Untyped: no type checking. What we might think of as type errors
show up either as weird results or as various runtime exceptions.

Last modified: Thu Feb 28 21:35:34 2019 CS164: Lecture #17 15


	Lecture 15: Static Semantics: Scope and TypeFrom material by G. Necula and P. Hilfinger
	Scope Rules: Use Before Definition
	Scope Rules: Overloading
	Dynamic Scoping
	Explicit vs. Implicit Declaration
	So How Do We Annotate with Declarations?
	Environment Diagrams and Symbol Entries
	Type Checking Phase
	Types and Type Systems
	Uses of Types
	Review: Dynamic vs. Static Types
	Subtyping
	Example
	Type Soundness
	Typing Options

