
Lecture 14: Static Semantics Overview1

Administrivia

• First in-class test 13 March.

1From material by R. Bodik and P. Hilfinger

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 1

Overview

• Lexical analysis

– Produces tokens

– Detects & eliminates illegal tokens

• Parsing

– Produces trees

– Detects & eliminates ill-formed parse trees

• Static semantic analysis ⇐= we are here

– Produces decorated tree with additional information attached

– Detects & eliminates remaining static errors

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 2

Static vs. Dynamic

• We use the term static to describe properties that the compiler can
determine without considering any particular execution.

– E.g., in

def f(x) : x + 1

Both uses of x refer to same variable

• Dynamic properties are those that depend on particular executions
in general.

– E.g., will x = x/y cause an arithmetic exception?

• Actually, distinction is not that simple. E.g., after

x = 3

y = x + 2

compiler could deduce that x and y are integers.

• But languages often designed to require that we treat variables only
according to explicitly declared types, because deductions are dif-
ficult or impossible in general.

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 3

Typical Tasks of the Semantic Analyzer

• Find the declaration that defines each identifier instance

• Determine the static types of expressions

• Perform re-organizations of the AST that were inconvenient in parser,
or required semantic information

• Detect errors and fix to allow further processing

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 4



Typical Semantic Errors: Java, C++

• Multiple declarations: a variable should be declared (in the same
region) at most once

• Undeclared variable: a variable should not be used without being
declared.

• Type mismatch: e.g., type of the left-hand side of an assignment
should match the type of the right-hand side.

• Wrong arguments: methods should be called with the right number
and types of arguments. Actually subset of type mismatch.

• Definite-assignment check (Java): conservative check that simple
variables assigned to before use.

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 5

Output from Static Semantic Analysis

Input is AST; output is an annotated tree: identifiers decorated with
declarations, other expressions with type information.

x = 3

def f (x):

return x+y

y = 2

Id Type Nesting

#1: x, Any, 0

#2: f, Any->Any, 0

#3: x, Any, 1

#4: y, Any, 0

stmt list

=

x:#1 3:Int

def

f:#2 id list

x:#3

return

+:Any

x:#3 y:#4

=

y:#4 2:Int

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 6

Output from Static Semantic Analysis (II)

• Analysis has added objects we’ll call symbol entries to hold informa-
tion about instances of identifiers.

• In this example, #1: x, Any, 0 denotes an entry for something
named ‘x’ occurring at the outer lexical level (level 0) and having
static type Any.

• For other expressions, we annotate with static type information.

• These symbol entry decorations might be attached directly to the
AST or stored separately in symbol tables and looked up: it’s all a
matter of representation.

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 7

Output from Static Semantic Analysis for Chocopy

Chocopy (like Java, C++) is statically typed, so we can have more specific
information in symbols.

stmt list

=

vdecl

x:#1 str

"Hi":str

def

f:#2 parms

vdecl

x:#3 int

int return

+: int

x:#3 y:#4

=

y:#4 2:int

x: str = "Hi"

y: int = 2

def f(x: int) -> int:

return x+y

Id Type Nesting

#1: x, str, 0

#2: f, int->int, 0

#3: x, int, 1

#4: y, int, 0

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 8



Output from Static Semantic Analysis: Classes

• In Python (dynamically typed), can write

class A(object):

def f(self): return self.x

a1 = A(); a2 = A() # Create two As

a1.x = 3; print a1.x # OK

print a2.x # Error; there is no x

so can’t say much about attributes (fields) of A.

• In Java, C, C++ (statically typed), analogous program is illegal, even
without second print (the class definition itself is illegal).

• So in statically typed languages, symbol entries for classes would
contain dictionaries mapping attribute names to types.

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 9

Scope Rules: Binding Names to Symbol Entries

• Scope of a declaration: section of text or program execution in
which declaration applies

• Declarative region: section of text or program execution that bounds
scopes of declarations (we’ll say “region” for short). (Others use the
term “scope” for what I’m calling a declarative region. I use a sepa-
rate term, since I think it is a distinct concept.)

• If scope of a declaration defined entirely according to its position
in source text of a program, we say language is statically scoped.

• If scope of a declaration depends on what statements get executed
during a particular run of the program, we say language has dynami-
cally scoped.

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 10

Scope Rules: Name=⇒Declaration is Many-to-One

• In most languages, can declare the same name multiple times, if its
declarations

– occur in different declarative regions, or

– involve different kinds of names.

– Examples from Java?, C++?

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 11

Scope Rules: Nesting

• Most statically scoped languages (including C, C++, Java) use:

Algol scope rule: Where multiple declarations might apply,
choose the one defined in the innermost (most deeply nested)
declarative region.

• Often expressed as “inner declarations hide (or shadow) outer ones.”

• Variations on this: Java disallows attempts to hide local variables
and parameters.

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 12



Scope Rules: Declarative Regions

• Languages differ in their definitions of declarative regions.

• In Java, variable declaration’s effect stops at the closing ‘}’, that
is, each function body is a declarative region.

• What others?

• In Python, modules, function headers and their bodies, lambda ex-
pressions, comprehensions (of lists, sets, and dictionaries) and gen-
erator expressions make up declarative regions, but nothing smaller.
Just one x in this program:

def f(x):

x = 3

for x in range(6):

print(x)

print(x)

It prints 0–5 and then 5 again.

Last modified: Tue Feb 26 15:01:26 2019 CS164: Lecture #14 13


	Lecture 14: Static Semantics OverviewFrom material by R. Bodik and P. Hilfinger
	Overview
	Static vs. Dynamic
	Typical Tasks of the Semantic Analyzer
	Typical Semantic Errors: Java, C++
	Output from Static Semantic Analysis
	Output from Static Semantic Analysis (II)
	Output from Static Semantic Analysis for Chocopy
	Output from Static Semantic Analysis: Classes
	Scope Rules: Binding Names to Symbol Entries
	Scope Rules: Name=-3muDeclaration is Many-to-One
	Scope Rules: Nesting
	Scope Rules: Declarative Regions

