
CS 164, Spring 2019 CS 164: Homework #6 P. N. Hilfinger

Due: Fri, 3 May 2019

1. A definition (that is, an assignment) of a simple variable is said to reach a point in
the program if it might be the last assignment to that variable executed before execution
reaches that point in the program. So for example, definition A below reaches points B

and C, but not D:

x = 3 # A

if a < 2:

x = 2

pass # D

else:

y = 5

pass # B

pass # C

Suppose we want to compute R(p), the set of all definitions that reach point p in a program.
Give forward rules (in the style of the lecture) for computing the reaching definitions,

Rout(s) for a statement s (the set of definitions that reach the point immediately after
the statement) as a function of Rin(s) (the definitions that reach the beginning) for each
assignment statement s and give the rules for computing Rin(s) as a function of the Rout
values of its predecessors.

2. Consider the loop

for i := 0 to n-1 do

for j := 0 to n-1 do

for k := 0 to n-1 do

c[i,j] := c[i,j] + a[i,k] * b[k,j]

In this nested loop, a, b, and c are two-dimensional arrays of 4-byte integers. Here is a
translation into intermediate code (assume that a, b, and c are addresses of static memory,
and that all other variables are in registers):

1



Homework #6 2

Entry:

i := 0 #1

goto L6 #2

L1:

j := 0 #3

goto L5 #4

L2:

k := 0 #5

goto L4 #6

L3:

t1 := 4 * n #7

t2 := t1 * i #8

t3 := 4 * j #9

t4 := t2 + t3 #10

t5 := *(t4 + c) #11

t6 := 4 * n #12

t7 := t6 * i #13

t8 := 4 * k #14

t9 := t7 + t8 #15

t10 := *(t9 + a) #16

t11 := 4 * n #17

t12 := t11 * k #18

t13 := 4 * j #19

t14 := t12 + t13 #20

t15 := *(t14 + b) #21

t16 := t10 * t15 #22

t17 := t5 + t16 #23

t18 := 4 * n #24

t19 := t18 * i #25

t20 := 4 * j #26

t21 := t19 + t20 #27

*(t21+c) := t17 #28

k := k + 1 #29

L4:

if k < n: goto L3 #30

j := j + 1 #31

L5:

if j < n: goto L2 #32

i := i + 1 #33

L6:

if i < n: goto L1 #34

Exit:

To notate accesses to memory, we’ve used C-like notation:

r1 := *(r2+K)

*(r1+K) := r2

*K := r3

r3 := *K

K is an integer literal, and L is a static-storage label (a constant address in memory). Unlike
C, the additions here are just straight addition: no automatic scaling by word size.

a. According to this code, how are the elements of the three two-dimensional arrays laid
out in memory (in what order do the elements of the arrays appear)?

b. Divide the instructions into basic blocks, each headed by a label and with no other
labels in the program.

c. The program is almost in SSA form, except for variables i, j, and k. Introduce
new variables and φ functions as needed to put the program into SSA form (try to
minimize φ functions).

d. Now optimize this code as best you can, moving assignments of invariant expres-
sions out of loops, eliminating common subexpressions, removing dead statements,
performing copy propagation, etc.


