Due: Fri, 3 May 2019

1. A definition (that is, an assignment) of a simple variable is said to reach a point in the program if it might be the last assignment to that variable executed before execution reaches that point in the program. So for example, definition A below reaches points B and C, but not D :
```
x = 3 # A
if a < 2:
    x = 2
    pass # D
else:
    y = 5
    pass # B
pass # C
```

Suppose we want to compute $R(p)$, the set of all definitions that reach point p in a program. Give forward rules (in the style of the lecture) for computing the reaching definitions, $R_{\text {out }}(s)$ for a statement s (the set of definitions that reach the point immediately after the statement) as a function of $R_{\text {in }}(s)$ (the definitions that reach the beginning) for each assignment statement s and give the rules for computing $R_{\mathrm{in}}(s)$ as a function of the $R_{\text {out }}$ values of its predecessors.
2. Consider the loop

```
for i := 0 to n-1 do
    for j := 0 to n-1 do
        for k := 0 to n-1 do
            c[i,j] := c[i,j] + a[i,k] * b[k,j]
```

In this nested loop, a, b, and c are two-dimensional arrays of 4-byte integers. Here is a translation into intermediate code (assume that a, b, and c are addresses of static memory, and that all other variables are in registers):

Entry:		$\mathrm{t} 11:=4 * \mathrm{n}$	\#17
i : = 0	\#1	t12 : $=$ t11 * k	\#18
goto L6	\#2	t13 := 4 * j	\#19
L1:		$\mathrm{t} 14:=\mathrm{t} 12+\mathrm{t} 13$	\#20
j : = 0	\#3	$\mathrm{t} 15:=*(\mathrm{t} 14+\mathrm{b})$	\#21
goto L5	\#4	$\mathrm{t} 16:=\mathrm{t} 10$ * t15	\#22
L2:		t 17 := t5 + t16	\#23
$\mathrm{k}:=0$	\#5	$\mathrm{t} 18:=4 * \mathrm{n}$	\#24
goto L4	\#6	t19 := t18 * i	\#25
L3:		t20 := 4 * j	\#26
$\mathrm{t} 1:=4 * \mathrm{n}$	\#7	$\mathrm{t} 21:=\mathrm{t} 19+\mathrm{t} 20$	\#27
t2 : $=\mathrm{t} 1 * \mathrm{i}$	\#8	*(t21+c) $:=\mathrm{t} 17$	\#28
t3 : $=4 * j$	\#9	$\mathrm{k}:=\mathrm{k}+1$	\#29
$\mathrm{t} 4:=\mathrm{t} 2+\mathrm{t} 3$	\#10	L4:	
$\mathrm{t} 5:=*(\mathrm{t} 4+\mathrm{c})$	\#11	if $\mathrm{k}<\mathrm{n}$: goto L3	\#30
t6 := $4 * \mathrm{n}$	\#12	$j \quad:=j+1$	\#31
t7 := t6 * i	\#13	L5:	
t8 := 4* k	\#14	if $\mathrm{j}<\mathrm{n}$: goto L2	\#32
$\mathrm{t} 9:=\mathrm{t} 7+\mathrm{t} 8$	\#15	i $:=\mathrm{i}+1$	\#33
$\mathrm{t} 10:=*(\mathrm{t} 9+\mathrm{a})$	\#16	L6:	
		if i < n: goto L1 Exit:	\#34

To notate accesses to memory, we've used C-like notation:

```
r1 := *(r2+K)
*(r1+K) := r2
*K := r3
r3 := *K
```

K is an integer literal, and L is a static-storage label (a constant address in memory). Unlike C, the additions here are just straight addition: no automatic scaling by word size.
a. According to this code, how are the elements of the three two-dimensional arrays laid out in memory (in what order do the elements of the arrays appear)?
b. Divide the instructions into basic blocks, each headed by a label and with no other labels in the program.
c. The program is almost in SSA form, except for variables i, j, and k. Introduce new variables and ϕ functions as needed to put the program into SSA form (try to minimize ϕ functions).
d. Now optimize this code as best you can, moving assignments of invariant expressions out of loops, eliminating common subexpressions, removing dead statements, performing copy propagation, etc.

