CS 164, Spring 2019

Due: Fri, 3 May 2019

1. A definition (that is, an assignment) of a simple variable is said to *reach* a point in the program if it *might be* the last assignment to that variable executed before execution reaches that point in the program. So for example, definition A below reaches points B and C, but not D:

```
x = 3  # A
if a < 2:
    x = 2
    pass  # D
else:
    y = 5
    pass  # B
pass  # C
```

Suppose we want to compute R(p), the set of all definitions that reach point p in a program. Give forward rules (in the style of the lecture) for computing the *reaching definitions*, $R_{\text{out}}(s)$ for a statement s (the *set* of definitions that reach the point immediately after the statement) as a function of $R_{\text{in}}(s)$ (the definitions that reach the beginning) for each assignment statement s and give the rules for computing $R_{\text{in}}(s)$ as a function of the R_{out} values of its predecessors.

2. Consider the loop

```
for i := 0 to n-1 do
  for j := 0 to n-1 do
    for k := 0 to n-1 do
        c[i,j] := c[i,j] + a[i,k] * b[k,j]
```

In this nested loop, a, b, and c are two-dimensional arrays of 4-byte integers. Here is a translation into intermediate code (assume that a, b, and c are addresses of static memory, and that all other variables are in registers):

Entry:		t11 := 4 * n	#17
i := 0	#1	t12 := t11 * k	#18
goto L6	#2	t13 := 4 * j	#19
L1:		t14 := t12 + t13	#20
j := 0	#3	t15 := *(t14 + b)	#21
goto L5	#4	t16 := t10 * t15	#22
L2:		t17 := t5 + t16	#23
k := 0	#5	t18 := 4 * n	#24
goto L4	#6	t19 := t18 * i	#25
L3:		t20 := 4 * j	#26
t1 := 4 * n	#7	t21 := t19 + t20	#27
t2 := t1 * i	#8	*(t21+c) := t17	#28
t3 := 4 * j	#9	k := k + 1	#29
t4 := t2 + t3	#10	L4:	
t5 := *(t4 + c)	#11	if k $<$ n: goto L3	#30
t6 := 4 * n	#12	j := j + 1	#31
t7 := t6 * i	#13	L5:	
t8 := 4 * k	#14	if j $<$ n: goto L2	#32
t9 := t7 + t8	#15	i := i + 1	#33
t10 := *(t9 + a)	#16	L6:	
		if i $<$ n: goto L1	#34
		Exit:	

To notate accesses to memory, we've used C-like notation:

r1 := *(r2+K) *(r1+K) := r2 *K := r3 r3 := *K

K is an integer literal, and L is a static-storage label (a constant address in memory). Unlike C, the additions here are just straight addition: no automatic scaling by word size.

- a. According to this code, how are the elements of the three two-dimensional arrays laid out in memory (in what order do the elements of the arrays appear)?
- b. Divide the instructions into basic blocks, each headed by a label and with no other labels in the program.
- c. The program is almost in SSA form, except for variables i, j, and k. Introduce new variables and ϕ functions as needed to put the program into SSA form (try to minimize ϕ functions).
- d. Now optimize this code as best you can, moving assignments of invariant expressions out of loops, eliminating common subexpressions, removing dead statements, performing copy propagation, etc.