
CS 164, Spring 2019 CS 164: Homework #4 P. N. Hilfinger

Due: Wed, 27 February 2019

The homework framework, as usual, is in ~cs164/hw/hw4 on the instructional machines
and as branch hw4 in the shared repository. Unless the problem specifies otherwise, please
put your solutions in a file named hw4.txt. Turn in your finished denull and hw4.txt in
your personal repository (not the team repository).

1. [From Aho, Sethi, Ullman] A grammar is called ǫ-free if there are either no ǫ productions,
or exactly one ǫ production of the form S → ǫ, where S is the start symbol of the grammar,
and does not appear on the right side of any productions. (We write ǫ productions either as
‘A :’ or ‘A : ǫ’; both mean the same thing: there are no terminals or non-terminals to the
right of the arrow). The template file denull is a skeleton for a Python program to do this.
It already provides functions for reading and printing grammars. Fill in the removeEpsilons
function to fulfill its comment. Apply your algorithm to the grammar:

S → aSbS | bSaS | ǫ

(This is a case in which your algorithm will need to introduce a new start symbol to fulfill
the conditions of the problem).

2. The process of parsing an LL(1) grammar (the class that can be processed by the pure
recursive-descent parsers we’ve worked with—the one’s without the while-loop trick) can
be encoded as a table-driven program. The table has nonterminals in one dimension, and
terminals in the other. Each entry (for nonterminal A and terminal symbol τ) is a grammar
rule for producing an A (one branch, in the terminology of the Notes), namely the rule to use
to produce an A if the next input symbol is τ . Consider the following ambiguous grammar:

1. prog → ǫ

2. prog → expr ’;’

3. expr → ID

4. expr → expr ’-’ expr

5. expr → expr ’/’ expr

6. expr → expr ’?’ expr ’:’ expr

7. expr → ’(’ expr ’)’

The start symbol is prog; ID and the quoted characters are the terminals.

a. Produce an (improper) LL(1) parsing table for this grammar. It’s improper because,
since it is ambiguous, some slots will have more than one production; list all of them.
Show the FIRST and FOLLOW sets.

b. Modify the grammar to be LL(1) (unambiguous and with at most one production per
table entry) and repeat part a with it.

1

Homework #4 2

In this case, we’re just interested in recognizing the language, so don’t worry about preserving
precedence and associativity.

3. [From Aho, Sethi, and Ullman] Consider the following ambiguous grammar:

E → E ’+’ E | E ’*’ E | ’(’ E ’)’ | id

and this parsing table for it (end-of-input, ⊣, is never shifted):

State id ’+’ ’*’ ’(’ ’)’ ⊣ E

0 s3 s2 s1
1 s4 s5 acc
2 s3 s2 s6
3 r4 r4 r4 r4
4 s3 s2 s7
5 s3 s2 s8
6 s4 s5 s9
7 r1 s5 r1 r1
8 r2 r2 r2 r2
9 r3 r3 r3 r3

In this table, sn denotes a transition in the state machine (“go to state n on seeing this
lookahead”) and rn means “reduce the last symbols just scanned by the state machine (i.e.,
on top of the parsing stack) using production n.” The productions are numbered left to right
from 1; production 1 is E → E ’+’ E. Blank entries indicate errors. The start state is 0. Use
the table to produce a reverse rightmost derivation of the string id+id+id*(id+id). That
is, give the sequence of reductions discovered by the parser.

Homework #4 3

4. Since the grammar of problem 3 is ambiguous, we had to add information to get a
table out of it; otherwise, some of the entries would be unresolved. There are several possible
parsing tables for it, depending on how we wish to resolve ambiguities. Show the modifications
to the table that are necessary to

a. Give ’+’ and ’*’ equal precedence, and make them left associative. Thus, x+y*z would
group as (x+y)*z, x*y+z as (x*y)+z, and x*y*z as (x*y)*z.

b. Give ’+’ higher precedence than ’*’, and make them left associative.

c. Give ’+’ lower precedence than ’*’, and make ’+’ right associative (’*’ stays left
associative).

d. Make it illegal to mix different operators without parenthesization. For example, to
make the example in Exercise 1, above, illegal.

5. Consider the string id+id(id), which is illegal according to the grammar of the preceding
two problems.

a. Show what happens when you try to parse it using the parsing table from problem 3.
That is, show all the steps taken by the parser up to the point where the machine finds
no valid transition.

b. Now modify the table as follows: for each row that contains at least one reduction
(rn), replace all the empty (error) entries in the action table for that row (i.e., the
part between the vertical lines) with that reduction. For example, all entries in row 9
(except for E) would become r3, and all entries except that for ’*’ (and E) in row 7
would become r1. Show what happens when you try to parse the illegal string with
this revised table. (This optimization—introducing default rules—makes tables more
compressible; the question is whether it causes the parser to recognize illegal sentences.)

Homework #4 4

6. Here’s another LR parsing table.

State ⊣ ’/’ ’:’ ’<’ ’>’ ’i’ ’v’ E F P S

0 r1 r1 r1 r1 r1 r1 r1 s1

1 acc s3 s4

3 s5

4 r2 r2 r2 r2 r2 r2 r2

5 s7 s6 s8

6 r7 r7 r7 s9 r7 r7 r7 s10

7 r4 r4 r4 r4 r4 r4 r4

8 s11

9 s7 s6 s12

10 r3 r3 r3 r3 r3 r3 r3

11 r5 r5 r5 r5 r5 r5 r5

12 s13

13 r6 r6 r6 r6 r6 r6 r6

The reductions here have the following properties:

r1: 0 symbols → S

r2: 2 symbols → S

r3: 2 symbols → E

r4: 1 symbols → E

r5: 4 symbols → F

r6: 3 symbols → P

r7: 0 symbols → P

For example, production #2 has nonterminal S on the left-hand side and two symbols on the
right-hand side (but I won’t tell you what they are).

By considering the parse of the following sentence:

v:v<v>/v:i/⊣

reconstruct the grammar (that is, determine what symbols appear on the right-hand sides of
the seven productions).

