
CS 164, Spring 2019 CS 164: Homework #1 P. N. Hilfinger

Due: Wednesday, 6 February 2019, 2400

General instructions about homework. Please submit this homework electronically.
See Submitting Your Work in Using Git in CS164 on the class web page. You will need git

and you will need to have electronically registered. In any case, please notify us of problems.
You’ll find templates for some solutions in the directory ~cs164/hw/hw1 and in the shared

repository. Set up a personal repository (say cs164-repo) as described in the instructions,
and then start your assignment with

$ cd cs164-repo

$ git fetch shared

$ git merge shared/hw1

$ git push

Your local repository will now be on branch master and contain a directory named hw1 with
some files in it. Place answers to any questions that don’t require programs in the file called
hw1/hw1.txt.

If you are working at home using your own installation (as opposed to using the instruc-
tional machines remotely), you’ll need a Python installation. See the Python link from the
class home page if you need one.

1. A subsequence of a string S (or any kind of sequence, really) is simply a sequence
consisting of zero or more characters from S in the same order as in S; for example, "ack",
"", "bk", and "back" are all subsequences of "back", but "kb" and "bb" are not. A substring

of S is a contiguous subsequence of zero or more characters of S; for example "ack", "ba",
"" and "back" are substrings of "back", but "bk" is not. Given a string S of length N ,
how many subsequences does it have? How many substrings? To simplify your life, you may

assume that letters in S are not repeated (the problem becomes rather “interesting” if you
count only distinct subsequences when S may contain repetitions).

More problems on the next page.

1

http://inst.eecs.berkeley.edu/~cs164/sp18/git.html#submitting

Homework #1 2

2. [From Aho, Sethi, Ullman] Give as simple a description as possible of the languages
denoted by the following regular expressions. For example, it is better to describe the language
denoted by ((a*b*)*(b*a*)*)* as “The set of all strings from the alphabet {a, b}” rather
than “A sequence of 0 or more a’s followed by 0 or more b’s, all repeated 0 or more times
and then followed by etc.” The latter might be correct, but shows no thought.

a. 0(0|1)*0

b. ((ǫ|0)1*)*

c. (0|1)*0(0|1)(0|1)

d. 0*10*10*10*

e. (00|11)*((01|10)(00|11)*(01|10)(00|11)*)*

3. [Adapted from Aho, Sethi, Ullman] Write the simplest regular expression you can for
each of the following languages, using basic regular expressions from Python. Turn in files
called P3a.py, P3b.py, etc., containing solutions to these problems, using the templates
for these files provided in the skeleton for this homework set. Python “regular expressions”
are considerably more powerful than the “classical” basic expressions we want here. For this
problem, restrict yourself to using just ordinary characters (that stand for themselves), plus
the special characters

[] () * + | . $ ^ ?

In the following, “letters” mean lower-case letters. Each pattern that you write must match
the entire input string (an entire line with the frameworks provided) for a match to succeed,
not just an initial segment.

a. Strings of letters that contain all five vowels in order (but not necessarily continguously),
each one exactly once.

b. Strings composed of letters a–f in which the letters are in alphabetical order (not all
letters have to appear in a string, but those that do must be in order).

c. Comments consisting of a string starting with /* and ending with */ without any */ in
between unless it occurs inside balancing quotes " and ". Quotes must be balanced, so
that /*"*/ is illegal, and only balancing pairs of quotes “deactivate” the */ symbol, so
that /*""*/""*/ is illegal (the */ occurs between quotes, but they don’t balance each
other).

d. All strings of 0’s and 1’s with an even number of 0’s and an odd number of 1’s.

e. All strings of 0’s and 1’s that do not contain the substring ‘011’.

f. All strings of 0’s and 1’s that do not contain the subsequence ‘011’.

Homework #1 3

4. In lecture you saw one definition of a regular grammar. Let’s be specific about (meta)syntax
for this problem and say that rules in this grammar have the following form:

α0 : α1α2 · · ·αn ;

where n ≥ 0, α0 is an identifier (as in Java), and each αi for i > 0 is either an identifier
or one of the two literals ’0’ or ’1’ (in single quotes). These rules define the identifiers
(nonterminals) to be sets of strings. The two literals represent {"0"} and {"1"} as for regular
expressions. There can be any number of these rules, subject to the restrictions from lecture:

• Each αi for 0 < i < n must be a literal or an identifier whose rules all appear before
any of the rules for α0; and

• αn, for n > 0, may also be α0.

Write regular grammars equivalent to each of the regular expressions in problem 2. Turn in
files called P4a.y, P4b.y, etc., containing solutions to these problems, using the templates
for these files provided in the skeleton for this homework set. You can compile these into test
programs with the command make on the instructional machines (at home, you’ll need the
Bison program and gcc).

