UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering
and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger
Spring 2005

Project #3: Code Generation

Due: Wednesday, 4 May 2005

The third project brings us to the last stage of the compiler, where we generate machine
code. Beginning with the AST we produced in Project #2 (with some additions and modifi-
cations by yours truly), you are to generate ia32 assembly code that will be assembled into a
working program.

When the directory “cs164/hw/proj3 becomes readable, you can copy the files we have
placed there to help with this project. We will also update the pyc.ast and pyc.semantics
packages to provide suitable decorated input for your code generator. Every significant iden-
tifier will have an appropriate Decl hung off it, and expressions will have Types.

Especially since this is the first time for the Pyth projects, you can expect updates along
the way (to make your life easier, one hopes), so be sure to consult the Project #3 entry
on the homework webpage from time to time, as well as the newsgroup, for details and new
developments.

1 The Machine

We'll be using the ia32 architecture (as the family that includes the 32-bit Intel processors
is called). We have provided you with an online, tutorial-style introduction (from Robert B.
K. Dewar of NYU), and we will probably scrape together some additional reference material.
You can the GCC compiler to look at what C code translates to:

gcc -8 -g foo.c
which produces a file foo.s, and to compile and link assembly-language files:
gcc -o myprog foo.s runtime.o

Only some of the instructional servers use the ia32 architecture (examples: rhombus,
pentagon, cube, sphere, po, torus). We will maintain a convenient online list. They all run
Solaris, as does solar. You can ssh into them as usual from home or from other instructional
machines. You’ll get error messages if you try to run pythc on the wrong architecture.

Project #3 2

2 The Runtime System

The pythc script that we’ll maintain on the instructional machines will link the code you
generate with our runtime system (written in C), which provides:

e the main procedure,

implementations of native methods,

functions for constructing dictionaries, lists, and tuples,

a function to create an object,

functions for printing, type conversion, and assorted other primitive operations called
for by the semantics,

e and the garbage collector.

We’ll maintain online documentation of the runtime system and of the runtime data
structures used for functions, built-in types, and so forth.

3 What Your Compiler Must Do

Your main program (in pyc.codegen.Main) will read the tree produced by parsing and static
semantics. This time, the delegates of your AST nodes will be concerned with code genera-
tion rather than static semantics, but otherwise things will be largely analogous to those in
Project #2.

The output from your program will be assembly language in gas format (the GNU as-
sembler). It should comprise three things:

1. Instructions that implement all of your functions, plus one special function for the main
program. For the most part, these will look like the instructions produced for ordinary
C functions, and you can use gcc -8 to give yourself hints about what they should look
like. Since Pyth provides general closures, like Scheme, there is a little more to it than
that, as will be documented in the online notes.

2. The virtual tables for all classes (the tables for built-in types are already in the runtime
system).

3. Tables describing each class and each stack frame, for use by the garbage collector.
Basically, these tell the runtime system where to find all the roots (see the garbage-
collection lectures) and all pointer attributes of objects. Again, their format will be
documented in on-line notes. You don’t write the garbage collector; it’s part of the
code we supply. Our garbage collector is not fully automatic, but only runs when called
via a certain native method. That should slightly decrease the obscurity of the bugs
caused by errors.

Project #3 3

4 Optimization

There are a few opportunities for optimization relative to naive implementations of Pyth. We
do not require that you do the clever thing, but we will be holding an execution-speed contest,
and might even be persuaded to give a point or two to the fastest-running Pyth programs.
Actually, it should require only modest effort to leave the standard Python implementation
in the dust (on suitably chosen benchmarks).

You can’t really do much except for things whose static types you know (and therefore
whose representation you know). In particular, if you know that something is an Int, there’s
a great deal you can do (since Pyth simply uses Java semantics for integers). For example,
in the program

x: Int; y: Int

x=0; y=0

while x < 1000:
y +=x; x += 1

the additions to y and x can be performed by addl and incl instructions.

The insanely ambitious among you might consider doing real optimization—common-
subexpression elimination, invariant code motion, constant folding, and the like. We really
don’t recommend this, however, since you’ll have more than enough to do as it is.

5 Output and Testing

For once, testing is going to be straightforward. Your test cases should be statically correct
Pyth programs (they may cause runtime errors, but they should get past the first two phases of
the compiler). Testing should consist of making sure that the programs successfully compile,
that they execute without crashing, and that they produce the correct output. As always,
testing will be an important part of your grade.

6 What to turn in

You will be turning in three things:
e Source files (in Java, since there seem to be no takers for C++).

e A testing subdirectory containing Pyth source files and corresponding files with the
correct output.

e A Makefile that provides (at least) two targets:

— The default target (built with a plain gmake command) should compile your pro-
gram, producing an executable program called pythc (we will provide instructions
for how to accomplish this in Java, so that you don’t need the java command to
run your program.

— The command gmake check should run all your tests against your compiler and
check the results.

Project #3 4

7 What We Supply

We will shortly update the pyc.ast and pyc.semantics packages and the standard prelude
for your use. We'll also add a few useful things to our own pyc.codegen package, as we did
for Project #2. We'll be modifying a few things (again, in an attempt to make your life
easier); watch the on-line documentation.

In addition, we’ll provide you with a C library containing the runtime system, and a script
that ties everything together (in past projects, we included this with the project files, but it
will probably be safer to maintain it centrally this time). People at home will need GCC on
an Intel machine (running Windows or Linux), as well as copies of all our files. Since this
project will not run on MacOS X installations (sorry), I may just take the opportunity to
convert the Java components to Java 1.5.

8 Assorted Advice

What, you aren’t finished yet? First, get to know the machine and assembly language by
reading the documentation on the ia32 and experimenting with C programs on GCC. The
problem in dealing with assembly language, of course, is that errors can have really obscure
consequences. The GDB debugger has an interface very similar to GJDB (not accidentally);
its documentation is available through Emacs. The command stepi steps over a single
instruction. You can use p/i $pc to print the instruction that is about to be executed; or
use display/i $pc to set things up so that the next instruction is printed after each stepi.
The debugger can display registers (with p $eax, for example).

You should definitely start writing lots of Pyth test programs, many of which you can test
with Python. We’ll try to make this a bit more convenient.

Again, be sure to ask us for advice rather than spend your own time getting frustrated
over an impasse. By now, you should have your partner’s phone number at least. Keep in
regular contact.

Be sure you understand what we provide. Our software actually does quite a bit for you.
Make sure you don’t reinvent the wheel.

Keep your program neat at all times. Keep the formatting of your code correct at all
times, and when you remove code, remove it; don’t just comment it out. It’s much easier to
debug a readable program. Afraid that if you chop out code, you’ll lose it and not be able
to go back? That’s what CVS or PRCS is for. Archive each new version when you get it to
compile. Either of these version-control systems will allow you to go back to earlier versions
at will.

Write comments for classes and functions before you write bodies, if only to clarify your
intent in your own mind. Keep comments up to date with changes. Remember that the idea
is that one should be able to figure how to use a function from its comment, without needing
to look at its body.

New Policy: Neither I nor the TAs will look at bug submissions for your code
generator that produce debugging output (via printlns). Also, we’ll expect you
to convince us that you’ve made a credible effort to use the debugger before
submitting a report.

You still aren’t finished?

	The Machine
	The Runtime System
	What Your Compiler Must Do
	Optimization
	Output and Testing
	What to turn in
	What We Supply
	Assorted Advice

