
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger

Spring 2005

Project #2: Static Analyzer for Pyth∗

Due: Wednesday, 6 April 2005

The second project picks up where the last left off. Beginning with the AST we pro-
duced in Project #1, you are to perform a number of static checks on its correctness, and
“decorate” it with information about the meanings of identifiers.

When the directory ~cs164/hw/proj2 becomes readable, you can copy the files we
have placed there to help with this project. We will also update the pyc.ast package (and
its C++ counterpart) to give you places to “hang” decorations on the tree. Specifically,
you will be able to connect every variable to a definition that contains (among other
information) what you know about its type.

1 Static Semantics Rules

The semantics of Pyth are largely those of Python, but with some significant changes that
make a certain amount of static checking possible. Assume the rules of Python, therefore,
except as otherwise indicated. Since this is the first offering of the project, and we may
yet make clarifications and simplify things to avoid problems we discover, you should be
sure to check the entry for this project on the homework page for updates (and watch the
newsgroup, of course).

1.1 Various Restrictions

The context-free grammar from Project #1 allows certain things that Pyth disallows. Some
of these could be enforced in the grammar, but weren’t for convenience. In any case, they
must be enforced in the static semantic analyzer.

∗Updated 5 April 2005. Corrections shown in red.

1

Project #2 2

1. Class definitions may appear only at the outer level—that is, a program is a sequence
of classdefs and other statements, none of which may contain a classdef nested within
it.

2. A break or continue statement may occur only in a loop (for or while).

3. A return statement may only occur in a def.

4. An identifier, C, that refers to a class (in the scope of a a class definition) may be
used only in the following ways:

a. In the inheritance clause of another class definition;

b. On the left of an attribute reference: C.x;

c. As the function name in a call (i.e., in an object creation): C(). In this version,
we deal only with parameterless constructors.

d. As a type name in a type assertion.

Thus, constructs like x = C, f (C), or if C are all illegal.

5. An inheritance clause in a class must reference a class defined previously in the
program. There may not be a circular chain of inheritance: a class may not inherit
directly or indirectly from itself.

1.2 Scope rules

In Pyth, the declarative regions (called namespaces in Python documentation) are as fol-
lows:

• The global region, consisting of the source file that is input to the compiler and the
built-in definitions or standard prelude (in Python, these are two nested regions);

• A class region for each class definition;

• A local region including the parameters and body of each function or method defini-
tion (def) and each lambda.

Local regions nest inside each other and inside the global region. Class regions nest in the
global region.

The scope of a def is the entire declarative region in which it occurs, except where
hidden in a nested scope. Likewise, the scope of a class definition is the entire global
region. A name defined by def or class may not be redefined in the same declarative
region. Since an assignment in Pyth, as in Python, causes a declaration, this means the
following are illegal:

Project #2 3

f = 3

def f (x): ... # Illegal redefinition.

def f (y): ... # Another illegal redefinition

class f: ... # And still another

The scope of a parameter is the entire lambda or function definition in which it occurs,
except where hidden by inner declarations of the same name.

If there is an assignment or augmented assignment to a variable in a declarative region,
or if it is implicitly assigned by being used as a control variable in a for statement, then
there is (one) implicit definition of that variable in the innermost region containing the
assignment, unless there is a global declaration of that variable in the region. The scope
of such an implicit definition is the entire innermost region containing it (before and after
the assignment), except where hidden by inner declarations, as usual. There is at most one
implicit definition of a variable generated by this rule; multiple assignments have the same
effect as one. If there is a global definition of a name in a certain region, then all uses of
that name in the region (again, except where hidden) refer to the definition of the name
in the global region. A name defined as global must also be defined by def or (implicitly)
by assignment in the global region. Thus, the following program is illegal:

def f ():

global a # Illegal: no assignment to a in the global region

a = 3

a = 0 # Program WOULD be legal if this statement were uncommented.

f ()

print a # Illegal: a is not defined.

The following are illegal:

class foo:

global a # Illegal: no assignment or def a in the global region

global b

def b (): ... # Illegal: b already declared as global.

def b (): ...

def a (): ... # global a WOULD be legal if this were uncommented

The nesting rules already given imply that if a name is not assigned to or defed in some
function body or lambda, then any use of it in that body refers to a def, or to an implicit
definition caused by an assignment, in some surrounding region; there must be one for the
program to be legal.

A variable is implicitly defined by the presence of an assignment statement even if,
during execution, that assignment never happens. Thus, the following is a statically legal

program that may cause a runtime error when executed (if a is used but never initialized)

Project #2 4

def f (x):

if x > 3:

a = "Answer is %d" % x

print a

In other words, your static analyzer never considers whether a variable will be initialized
(assigned to) before it is used when a program is run.

When the innermost declarative region surrounding an assignment is a class definition,
the assigned-to variable is an instance variable of the class. The class also inherits all
instance variables of its parent (if any). An assignment to an instance variable of the
parent does not create a second instance variable of the same name; it refers to the parent’s
variable. These are the only legal instance variables (in Python, you can introduce new
instance variables into a class or class object by assignment to an attribute at any time). In
addition, the assigned-to variable is also defined as a class variable (static in Java). Thus,

class Stuff:

x = 13

def g (self, y): self.x = y

z = Stuff ()

z.g (42)

print Stuff.x # Prints 13

print z.x # Prints 42

When your static checker sees Stuff.x, it will know that Stuff is the name of a class.
It should also be able to determine whether x is defined as a class variable of that class.
On the other hand, when you see z.x, your checker won’t generally know whether the
expression is valid unless it happens to have a type declaration for z.

A class may def a function that has a def in its parent, which has the effect of overriding
the parent’s definition.

2 Types

The types in Pyth are as follows:

Any The supertype of all types. To say that x has type Any is to say we know nothing
about its type.

Unit The type of None. Unit is a subtype of all types except Int.

Int The type of Pyth integers (like Java’s int type).

String All kinds of Pyth strings.

Project #2 5

List Mutable sequences, as created by the [...] construct.

Tuple Tuples, as created by (...).

Dict Dictionaries, as created by {. . . }.

classes Each class name functions also as the name of a type. Class types are supertypes
of Unit, and subtypes of Any and of their parent type.

function types As given by the syntax for function type in the grammar. A function type
(D1, · · · , Dn)− > C is a subtype of (D′

1
, · · · , D′

n
)− > C ′ iff C is a subtype of C ′ and

each D′

i
is a subtype of Di (Yes, I got that right; see if you can figure out why. Hint

to you mathematicians: the word is “contravariant”).

The names String, etc., are not reserved; they are meaningful as types only in Pyth type
assertions.

By default, any defined entity in Pyth has type Any. A defed function has (by default)
a type (Any,Any,...)->Any, where the number of Any’s to the left of the arrow is the
number of parameters declared for the function. A Pyth type assertion ascribes a type to
a defined name. The name must be declared somewhere in the same innermost declarative
region that contains its type assertion, and successive assertions for the same name must
be compatible.

The AST definitions are set up so that each type is represented by an object that tells
you what attributes (things fetched by the dot operator) that type has, and whether it is
a sub- or supertype of another.

The job of your analysis is to determine the most specific type you can for each expres-
sion and declaration in the program, and to find any uses of a name that must be illegal.
For this purpose, you only need to use information gleaned from type assertions, defs,
and the language rules about certain basic constructs of the language: string literals are
of type String, integer literals of type Int, tuples of type Tuple, list displays of type List,
dictionary displays of type Dict, and lambdas have a function type (Any,...,Any)->Any.
If you know the type of a function, you can determine the type of a call to the function.
Since the AST translates many Pyth constructs into calls, this fact will take care of most
type checking for you.

As an example, your analyzer should be able catch these illegalities:

def f (x, y): x + y

print f (3) # ERROR: number of arguments doesn’t match f’s type

class Foo:

x: Int

x = 3

S: String

S = "a"

Project #2 6

S = 3 # ERROR: wrong type

Foo.x = S # ERROR: wrong type

3[1] # ERROR: Int doesn’t define __getitem__

Your program is not required to catch this:

f = 3

f(2) # There is no type assertion or def for f, so you don’t

know whether it’s a function.

a: List

a = ["x", "y", "z"]

a[0] + 1 # Only know that a is a List, not what’s in it

a[-1] # Don’t understand about index bounds.

The specific legality rules we want checked are:

1. In a call f(E1, . . . , En), either f must have type Any (i.e., unknown) or it must have
a function type with n arguments.

2. Also, if f has the type (T1, . . . , Tn) → T0, then the known type of each Ei must be
feasible for type Ti. We say that type A is feasible for type F if either A is a subtype
of F or F is a subtype of A. Unlike Java, this allows many programs where the
compiler cannot tell for certain that a particular call or assignment is allowed. What
it does not allow is passing something known to be an Int as a String parameter.

3. In an assignment x = E, the type of E must be feasible for that of x.

4. In an assignment x1, . . . , xn = E, where n > 1, the type of E must be Any, Tuple,
or List, or Dict.

5. In an attribute reference X.y, either X has type Any, or the attribute y is known to
be an attribute of X (an instance variable for a class, e.g.).

Most other interesting cases are handled by the function-call rule.

3 The Standard Prelude

The term standard prelude, is used to describe the set of predefined things that a language
provides. You don’t have to worry about this; it will be our job to arrange that the AST that
is input to your program contains all the necessary definitions, including information about
the methods defined on built-in types. You won’t have to make any special arrangements
for checking that x[3] is legal; in the tree, it will look like a function call (to getitem)
and the rules for function call will cover it.

Project #2 7

4 Output and Testing

The output of the program is again a textual representation of the AST (plus error mes-
sages). It’s even more difficult than in the first project to check that your program’s output
is correct. Error tests will be of particular importance: you must make sure that breaking
any of the rules causes an error. In addition, however, we will be augmenting the AST to
provide a “decorated unpything” that reconstructs the source program with little anno-
tations indicating which definition connects to each use, and giving type information for
defined quantities. Once again, testing will be an important part of your grade.

5 What to turn in

You will be turning in three things:

• Source files (in Java or C++).

• A testing subdirectory containing Pyth source files and corresponding files with the
correct output.

• A Makefile that provides (at least) two targets:

– The default target (built with a plain gmake command) should compile your
program, producing an executable program called pythc (we will provide in-
structions for how to accomplish this in Java, so that you don’t need the java

command to run your program.

– The command gmake check should run all your tests against your compiler and
check the results.

6 What We Supply

We will shortly update the pyc.ast package for your use. We’d like to keep control of the
AST hierarchy to make changes where needed, so we will be using a version of the Decorator

Pattern to allow you to add whatever you need. That is, each AST node will have a delegate

pointer to an object that you will control and that will contain any additional information
and methods that you need to add. With this, and judicious use of inheritance, you can
add things to AST, in effect, without rewriting the types.

7 Assorted Advice

What, you haven’t started yet? First, get to know the Python language better, compare
it to Pyth, and start writing test cases

Project #2 8

Again, be sure to ask us for advice rather than spend your own time getting frustrated
over an impasse. By now, you should have your partner’s phone number at least. Keep in
regular contact.

Be sure you understand what we provide. The pyc.ast package actually does quite a
bit for you. Make sure you don’t reinvent the wheel.

Do not feel obliged to cram all the checks that are called for here into one method! Keep
separate checks in separate methods. To the extent possible, introduce and test them one
at a time.

Keep your program neat at all times. Keep the formatting of your code correct at all
times, and when you remove code, remove it; don’t just comment it out. It’s much easier
to debug a readable program. Afraid that if you chop out code, you’ll lose it and not be
able to go back? That’s what CVS or PRCS is for. Archive each new version when you get
it to compile. Either of these version-control systems will allow you to go back to earlier
versions at will.

Write comments for classes and functions before you write bodies, if only to clarify your
intent in your own mind. Keep comments up to date with changes. Remember that the
idea is that one should be able to figure how to use a function from its comment, without
needing to look at its body.

You still haven’t started?

	Static Semantics Rules
	Various Restrictions
	Scope rules

	Types
	The Standard Prelude
	Output and Testing
	What to turn in
	What We Supply
	Assorted Advice

