
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger

Spring 2005

Project #1: Lexer and Parser for Pyth

Due: Monday, 2 March 2005

This first project calls for writing a lexical analyzer and parser for our Python dialect
(Pyth) that produces abstract syntax trees (ASTs). The semantic actions of your parser
will build up these trees, and the main program will print them in a Lisp-like format. So
that you can see whether you’re getting things right, we will supply a sample back-end
that accepts these ASTs and prints out corresponding Python translations. The resulting
programs will not, of course, be identical to the input, but should have the same effects.
Part of your job is to test systematically that this is so.

When the directory ~cs164/hw/proj1 becomes readable, you can copy the files we
have placed there to help with this project. We will provide here some classes for creating,
reading, and printing abstract syntax trees for the Pyth dialect. Alternatively (although
we certainly do not recommend this) you can throw them away and work from scratch.
Your task is to fulfill a specification, not to do it in any particular way.

The homework page will contain pointers to current descriptions of the Pyth subset you
are to implement. We’ll stick to electronic form, at least for now, since the description is
subject to change if we discover things that we decide are more trouble for you to implement
than they’re worth.

Abstract Syntax Trees

Also look at the homework page for links to the AST description. For this assignment, it
is only necessary for you to produce the external (printed) form of the AST. Nevertheless,
we’ll provide a convenient library for building these trees internally, which you’ll probably
want to use.

We have considerably simplified the description of the AST by relying on an interest-
ing feature of the Python language: most operators correspond to special methods. For

1



Project #1 2

example, the + operator corresponds to the method __add__, so that 3+x is equivalent to
(3).__add__(x). This eliminates the need for individual node types for all the operators;
we can make almost everything a method call with the right identifier for the method
name.

1 Output and Testing

The output of the program is a textual representation of the AST. This design is not
optimal for a real compiler, since there is considerable overhead involved in converting
back and forth between the internal tree form and text. For our purposes, however, it
is useful that the output of our compiler modules has this representation- independent
textual form. It frees us from dependence on a particular implementation language, for
one thing, and minimizes interactions between compiler phases (particularly useful when
we plug our backend modules into your front ends).

Naturally, this raises the question of how you check that your compiler’s output is
correct. It’s all very well to decide that you are going to test your results, but just what
does this mean? Presumably, you must start with a body of test cases: Pyth programs
that systematically exercise all constructs of the language and all parts of your compiler.
You’ll need a convenient way to run all your tests (your test suite) against the latest version
of your compiler, and to mechanically check the result. One possibility is to look at the
actual ASTs produced and make sure they are “right,” which implies that you figure out
by hand what your test cases are supposed to produce. This can be rather tedious and also
has the problem that there may be alternative equivalent ASTs for any given program, and
your compiler is not necessarily wrong for picking something different from your canonical
solution.

Therefore, we’re looking for a slightly different approach. We will provide a back end
that “compiles” your ASTs into standard Python, suitable for execution with a Python
interpreter. By making each of your test cases “self-testing”—by having them be little
programs each of which prints something—you can compare the outputs of these programs
with what they are supposed to produce.

Testing is important and, quite frankly, we don’t have you do enough of it. To try to
change that, 6 points of your project grade will come from the quality and completeness
of your test cases.

2 What to turn in

You will be turning in three things:

• Source files (in flex, jflex, bison, jbison, C++, or Java).



Project #1 3

• A testing subdirectory containing Pyth source files and corresponding files with the
correct output.

• A Makefile that provides (at least) two targets:

– The default target (built with a plain gmake command) should compile your
program, producing an executable program called pythc (we will provide in-
structions for how to accomplish this in Java, so that you don’t need the java

command to run your program.

– The command gmake check should run all your tests against your compiler and
check the results.

3 Assorted Advice

First, get started as soon as possible. Second, don’t ever waste time beating your head
against a wall. If you come to an impasse, recognize it quickly and come see one of us or, if
we are not immediately available, work on something else for a while (you can never have
enough test cases, for example). Third, keep track of your partner. If possible, schedule
time to do most of your work together. I’ve seen all too many instances of the Case of the
Flaky Partner.

Learn your tools. You should be doing all of your compilations using gmake. Get to
know this tool and try to understand the “makefiles” we give you. It really does make
life much easier for you. Learn to use it from within Emacs. Learn to use the gdb and
gjdb debuggers (also usable from within Emacs). In most cases, if your C++ program
blows up, you should be able to at least tell me where, it blew up (even if the error that
caused it is elsewhere). I do not look kindly on those who do not at least make that effort
before consulting me. Use CVS or PRCS to store a history of versions of your program
and to share development with your partner (we’ll have a session or two on this subject).
If you are using some other IDE at home (like Eclipse), make sure you learn how to use
the analogous features in it (if it doesn’t have such features, it is not a proper IDE; find
another).


	Output and Testing
	What to turn in
	Assorted Advice

