Introduction to Parsing

Lecture 8
Adapted from slides by G. Necula

Outline

• Limitations of regular languages
• Parser overview
• Context-free grammars (CFG’s)
• Derivations

Languages and Automata

• Formal languages are very important in CS
 - Especially in programming languages
• Regular languages
 - The weakest formal languages widely used
 - Many applications
• We will also study context-free languages

Limitations of Regular Languages

• Intuition: A finite automaton that runs long enough must repeat states
• Finite automaton can’t remember # of times it has visited a particular state
• Finite automaton has finite memory
 - Only enough to store in which state it is
 - Cannot count, except up to a finite limit
• E.g., language of balanced parentheses is not regular: \{ ()^i | i \geq 0 \}

The Structure of a Compiler

The Functionality of the Parser

• Input: sequence of tokens from lexer
• Output: abstract syntax tree of the program
Example

- **Pyth:**
  ```python
  if x == y: z = 1
  else: z = 2
  ```
- **Parser input:**
  ```
  IF ID == ID : ID = INT
  ELSE : ID = INT
  ```
- **Parser output (abstract syntax tree):**

Why A Tree?

- Each stage of the compiler has two purposes:
 - Detect and filter out some class of errors
 - Compute some new information or translate the representation of the program to make things easier for later stages
- Recursive structure of tree suits recursive structure of language definition
- With tree, later stages can easily find "the else clause," e.g., rather than having to scan through tokens to find it.

Comparison with Lexical Analysis

<table>
<thead>
<tr>
<th>Phase</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexer</td>
<td>Sequence of characters</td>
<td>Sequence of tokens</td>
</tr>
<tr>
<td>Parser</td>
<td>Sequence of tokens</td>
<td>Syntax tree</td>
</tr>
</tbody>
</table>

The Role of the Parser

- Not all sequences of tokens are programs...
- ...Parser must distinguish between valid and invalid sequences of tokens
- We need
 - A language for describing valid sequences of tokens
 - A method for distinguishing valid from invalid sequences of tokens

Programming Language Structure

- Programming languages have recursive structure
- Consider the language of arithmetic expressions with integers, +, *, and ()
- An expression is either:
 - an integer
 - an expression followed by "+" followed by expression
 - an expression followed by "*" followed by expression
 - a '(' followed by an expression followed by ')'
- int, int + int, (int + int) * int are expressions

Notation for Programming Languages

- An alternative notation:
  ```
  E -> int
  E -> E + E
  E -> E * E
  E -> (E)
  ```
- We can view these rules as rewrite rules
 - We start with E and replace occurrences of E with some right-hand side
    ```
    E -> E * E -> (E) * E -> (E + E) * E -> ...
    -> (int + int) * int
    ```
Observation

- All arithmetic expressions can be obtained by a sequence of replacements
- Any sequence of replacements forms a valid arithmetic expression
- This means that we cannot obtain \((\text{int })\)
 by any sequence of replacements. Why?
- This set of rules is a context-free grammar

Context-Free Grammars

- A CFG consists of
 - A set of non-terminals \(N \)
 - By convention, written with capital letter in these notes
 - A set of terminals \(T \)
 - By convention, either lower case names or punctuation
 - A start symbol \(S \) (a non-terminal)
 - A set of productions

- Assuming \(E \in N \)
 \[E \rightarrow e \]
 or
 \[E \rightarrow Y_1 Y_2 \ldots Y_n \quad \text{where } Y_i \in N \cup T \]

Examples of CFGs

Simple arithmetic expressions:

\[E \rightarrow \text{int} \]
\[E \rightarrow E + E \]
\[E \rightarrow E * E \]
\[E \rightarrow (E) \]
- One non-terminal: \(E \)
- Several terminals: \(\text{int, +, *, (,)} \)
- Called terminals because they are never replaced
- By convention the non-terminal for the first production is the start one

The Language of a CFG

Read productions as replacement rules:

\[X \rightarrow Y_1 \ldots Y_n \]
- Means \(X \) can be replaced by \(Y_1 \ldots Y_n \)
\[X \rightarrow e \]
- Means \(X \) can be erased (replaced with empty string)

Key Idea

1. Begin with a string consisting of the start symbol \("S"\)
2. Replace any non-terminal \(X \) in the string by a right-hand side of some production
 \[X \rightarrow Y_1 \ldots Y_n \]
3. Repeat (2) until there are only terminals in the string
4. The successive strings created in this way are called sentential forms.

The Language of a CFG (Cont.)

More formally, may write

\[X_1 \ldots X_i \ldots X_{n-1} \ldots X_n \rightarrow X_1 \ldots X_{i-1} Y_1 \ldots Y_m X_{i+1} \ldots X_n \]
if there is a production

\[X_i \rightarrow Y_1 \ldots Y_m \]
The Language of a CFG (Cont.)

Write
\[X_1 \ldots X_n \rightarrow^* Y_1 \ldots Y_m \]
if
\[X_1 \ldots X_n \rightarrow \ldots \rightarrow \rightarrow Y_1 \ldots Y_m \]
in 0 or more steps

The Language of a CFG

Let \(G \) be a context-free grammar with start symbol \(S \). Then the language of \(G \) is:
\[L(G) = \{ a_1 \ldots a_n \mid S \rightarrow^* a_1 \ldots a_n \text{ and every } a_i \text{ is a terminal} \} \]

Examples:

- \(S \rightarrow 0 \) also written as \(S \rightarrow 0 \mid 1 \)
- \(S \rightarrow 1 \)
 Generates the language \(\{ "0", \"1\" \} \)
- What about \(S \rightarrow 1A \)
 \(A \rightarrow 0 \mid 1 \)
- What about \(S \rightarrow 1A \)
 \(A \rightarrow 0 \mid 1A \)
- What about \(S \rightarrow \varepsilon \mid (S) \)

Pyth Example

A fragment of Pyth:

\[
\begin{align*}
\text{Compound} & \rightarrow \text{while Expr: Block} \\
& \mid \text{if Expr: Block Elses} \\
\text{Elses} & \rightarrow \varepsilon \mid \text{else: Block} \mid \text{elif Expr: Block Elses} \\
\text{Block} & \rightarrow \text{Stmt_List} \mid \text{Suite}
\end{align*}
\]

(Formal language papers use one-character non-terminals, but we don’t have to!)

Notes

The idea of a CFG is a big step. But:

- Membership in a language is “yes” or “no”
 - we also need parse tree of the input
- Must handle errors gracefully
- Need an implementation of CFG’s (e.g., bison)

More Notes

- Form of the grammar is important
 - Many grammars generate the same language
 - Tools are sensitive to the grammar
 - Tools for regular languages (e.g., flex) are also sensitive to the form of the regular expression, but this is rarely a problem in practice
Derivations and Parse Trees

• A derivation is a sequence of sentential forms resulting from the application of a sequence of productions
 \[S \rightarrow \ldots \rightarrow \ldots \]

• A derivation can be represented as a tree
 - Start symbol is the tree's root
 - For a production \(X \rightarrow Y_1 \ldots Y_n \) add children \(Y_1, \ldots, Y_n \) to node \(X \)

Derivation Example

• Grammar
 \[
 E \rightarrow E + E | E * E | (E) | \text{int}

 \]

• String
 \[
 \text{int} * \text{int} + \text{int}

 \]

Derivation Example (Cont.)

\[
\begin{align*}
E & \rightarrow E + E \\
& \rightarrow E * E + E \\
& \rightarrow \text{int} * E + E \\
& \rightarrow \text{int} * \text{int} + E \\
& \rightarrow \text{int} * \text{int} + \text{int}
\end{align*}
\]

Derivation in Detail (1)

\[
\begin{align*}
E & \rightarrow E + E \\
E & \rightarrow E * E + E
\end{align*}
\]
Notes on Derivations

• A parse tree has
 - Terminals at the leaves
 - Non-terminals at the interior nodes
• A left-right traversal of the leaves is the original input
 - The parse tree shows the association of operations, the input string does not!
 - There may be multiple ways to match the input
 - Derivations (and parse trees) choose one

leftmost and Right-most Derivations

• The example was a leftmost derivation
 - At each step, replaced the leftmost non-terminal
 → E • There is an equivalent
 → E + E
 • There is an equivalent
 → E + int
 equivalent
 → E * E + int
 notation of a rightmost
 → E * int + int
 derivation, shown here:
 → int * int + int

rightmost Derivation in Detail (1)
Aside: Canonical Derivations

- Take a look at that last derivation in reverse.
- The active part (red) tends to move left to right.
- We call this a reverse rightmost or canonical derivation.
- Comes up in bottom-up parsing. We’ll return to it in a couple of lectures.
Derivations and Parse Trees

- For each parse tree there is a leftmost and a rightmost derivation
- The difference is the order in which branches are added, not the structure of the tree.

Parse Trees and Abstract Syntax Trees

- The example we saw near the start:

```
IF-THEN-ELSE

==
ID ID ID INT ID INT
```

was not a parse tree, but an abstract syntax tree
- Parse trees slavishly reflect the grammar.
- Abstract syntax trees are more general, and abstract away from the grammar, cutting out detail that interferes with later stages.

Summary of Derivations

- We are not just interested in whether $s \in L(G)$
 - We need a parse tree for s, and ultimately an abstract syntax tree.
- A derivation defines a parse tree
 - But one parse tree may have many derivations
- leftmost and rightmost derivations are important in parser implementation