Register Allocation

Lecture 38
(from notes by G. Necula and R. Bodik)

Lecture Outline

• Memory Hierarchy Management
• Register Allocation
 - Register interference graph
 - Graph coloring heuristics
 - Spilling
• Cache Management

The Memory Hierarchy

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Access Time</th>
<th>Storage Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
<td>1 cycle</td>
<td>256-2000 bytes</td>
</tr>
<tr>
<td>Cache</td>
<td>3 cycles</td>
<td>256k-1M</td>
</tr>
<tr>
<td>Main memory</td>
<td>20-100 cycles</td>
<td>32M-4G</td>
</tr>
<tr>
<td>Disk</td>
<td>0.5-5M cycles</td>
<td>10G-1T</td>
</tr>
</tbody>
</table>

Managing the Memory Hierarchy

• Programs are written as if there are only two kinds of memory: main memory and disk
• Programmer is responsible for moving data from disk to memory (e.g., file I/O)
• Hardware is responsible for moving data between memory and caches
• Compiler is responsible for moving data between memory and registers

Current Trends

• Cache and register sizes are growing slowly
• Processor speed improves faster than memory speed and disk speed
 - The cost of a cache miss is growing
 - The widening gap is bridged with more caches
• It is very important to:
 - Manage registers properly
 - Manage caches properly
• Compilers are good at managing registers

The Register Allocation Problem

• Intermediate code uses as many temporaries as necessary
 - This complicates final translation to assembly
 - But simplifies code generation and optimization
 - Typical intermediate code uses too many temporaries
• The register allocation problem:
 - Rewrite the intermediate code to use fewer temporaries than there are machine registers
 - Method: assign more temporaries to a register
 - But without changing the program behavior
History

- Register allocation is as old as intermediate code.
- Register allocation was used in the original FORTRAN compiler in the '50s
 - Very crude algorithms
- A breakthrough was not achieved until 1980 when Chaitin invented a register allocation scheme based on graph coloring
 - Relatively simple, global and works well in practice

An Example

- Consider the program:
 \[
 \begin{align*}
 a &:= c + d \\
 e &:= a + b \\
 f &:= e - 1
 \end{align*}
 \]
- with the assumption that \(a\) and \(e\) die after use
- Temporary \(a\) can be "reused" after \(a + b\)
- Same with temporary \(e\) after \(e - 1\)
- Can allocate \(a, e,\) and \(f\) all to one register \((r_1)\):
 \[
 \begin{align*}
 r_1 &:= c + d \\
 r_1 &:= r_1 + b \\
 r_1 &:= r_1 - 1
 \end{align*}
 \]

Basic Register Allocation Idea

- The value in a dead temporary is not needed for the rest of the computation
 - A dead temporary can be reused
- Basic rule:
 - Temporaries \(t_1\) and \(t_2\) can share the same register if at any point in the program at most one of \(t_1\) or \(t_2\) is live!

Algorithm: Part I

- Compute live variables for each point:
 \[
 \begin{align*}
 (a,c,f) &\quad \rightarrow \quad (b,c,f) \\
 (c,d,f) &\quad \rightarrow \quad (c,d,e,f) \\
 (c,e) &\quad \rightarrow \quad (c,d,e,f) \\
 (c,f) &\quad \rightarrow \quad (b,c,e,f) \\
 (b) &\quad \rightarrow \quad (b)
 \end{align*}
 \]

The Register Interference Graph

- Two temporaries that are live simultaneously cannot be allocated in the same register
- We construct an undirected graph
 - A node for each temporary
 - An edge between \(t_1\) and \(t_2\) if they are live simultaneously at some point in the program
- This is the register interference graph (RIG)
 - Two temporaries can be allocated to the same register if there is no edge connecting them

Register Interference Graph, Example.

- For our example:
 \[
 \begin{align*}
 f &\quad \rightarrow \quad a \\
 e &\quad \rightarrow \quad b \\
 d &\quad \rightarrow \quad c
 \end{align*}
 \]
 - E.g., \(b\) and \(c\) cannot be in the same register
 - E.g., \(b\) and \(d\) can be in the same register
Register Interference Graph, Properties.

- It extracts exactly the information needed to characterize legal register assignments.
- It gives a global (i.e., over the entire flow graph) picture of the register requirements.
- After RIG construction the register allocation algorithm is architecture independent.

Graph Coloring, Definitions.

- A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors.
- A graph is k-colorable if it has a coloring with k colors.

Register Allocation Through Graph Coloring

- In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (temporaries).
- Let k = number of machine registers.
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers.

Graph Coloring, Example.

- Consider the sample RIG.

 ![Graph Coloring Example Diagram]

 - There is no coloring with fewer than 4 colors.
 - There are 4-colorings of this graph.

Graph Coloring, Example.

- Under this coloring the code becomes:

  ```
  r_2 := r_3 * r_4 
r_3 := r_2 
r_4 := r_3 + r_4 
r_1 := 2 * r_2 
r_2 := r_2 - 1 
r_3 := r_1 + r_4 
  ```

Computing Graph Colorings

- The remaining problem is to compute a coloring for the interference graph.
- But:
 1. This problem is very hard (NP-hard). No efficient algorithms are known.
 2. A coloring might not exist for a given number or registers.
- The solution to (1) is to use heuristics.
- We'll consider later the other problem.
Graph Coloring Heuristic

- Observation:
 - Pick a node t with fewer than k neighbors in RIG
 - Eliminate t and its edges from RIG
 - If the resulting graph has a k-coloring then so does the original graph
- Why:
 - Let $c_1, ..., c_n$ be the colors assigned to the neighbors of t in the reduced graph
 - Since $n < k$ we can pick some color for t that is different from those of its neighbors

Graph Coloring Heuristic

- The following works well in practice:
 - Pick a node t with fewer than k neighbors
 - Push t on a stack and remove it from the RIG
 - Repeat until the graph has one node
- Then start assigning colors to nodes in the stack (starting with the last node added)
 - At each step pick a color different from those assigned to already colored neighbors

Graph Coloring Example (1)

- Start with the RIG and with $k = 4$:

 Stack: {}

- Remove a and then d

Graph Coloring Example (2)

- Now all nodes have fewer than 4 neighbors and can be removed: c, b, e, f

Graph Coloring Example (2)

- Start assigning colors to: f, e, b, c, d, a

What if the Heuristic Fails?

- What if during simplification we get to a state where all nodes have k or more neighbors?
- Example: try to find a 3-coloring of the RIG:
What if the Heuristic Fails?

- Remove \(a \) and get stuck (as shown below)
- Pick a node as a candidate for spilling
 - A spilled temporary "lives" in memory
- Assume that \(f \) is picked as a candidate

\[
\begin{align*}
\text{f} & \quad \text{b} \\
\text{e} & \quad \text{d} \\
\text{c} & \quad \text{a}
\end{align*}
\]

What if the Heuristic Fails?

- Remove \(f \) and continue the simplification
 - Simplification now succeeds: \(b, d, e, c \)

\[
\begin{align*}
\text{b} & \quad \text{d} \\
\text{e} & \quad \text{c}
\end{align*}
\]

What if the Heuristic Fails?

- On the assignment phase we get to the point when we have to assign a color to \(f \)
- We hope that among the 4 neighbors of \(f \) we use less than 3 colors ⇒ optimistic coloring

\[
\begin{align*}
\text{f} & \quad \text{b} \\
\text{e} & \quad \text{d} \\
\text{c} & \quad \text{a}
\end{align*}
\]

Spilling

- Since optimistic coloring failed we must spill temporary \(f \)
- We must allocate a memory location as the home of \(f \)
 - Typically this is in the current stack frame
 - Call this address \(fa \)
- Before each operation that uses \(f \), insert \(f := \text{load} \ fa \)
- After each operation that defines \(f \), insert \(\text{store} \ f, \ fa \)

Recomputing Liveness Information

- The new liveness information after spilling:

\[
\begin{align*}
(a,c,f) & \quad (a,b+c) \\
(c,d,f) & \quad (d,-a) \\
(c,e) & \quad (f := \text{load} \ fa) \\
(c,f) & \quad (b := d + e) \\
& \quad (e := e - 1) \\
& \quad (b := f + c)
\end{align*}
\]
Recomputing Liveness Information

- The new liveness information is almost as before
- \(f \) is live only
 - Between a \(f := \text{load} \) \(f_a \) and the next instruction
 - Between a \(\text{store} \) \(f, f_a \) and the preceding instr.
- Spilling reduces the live range of \(f \)
- And thus reduces its interferences
- Which result in fewer neighbors in RIG for \(f \)

Recompute RIG After Spilling

- The only changes are in removing some of the edges of the spilled node
- In our case \(f \) still interferes only with \(c \) and \(d \)
- And the resulting RIG is 3-colorable

Spilling (Cont.)

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
- Possible heuristics:
 - Spill temporaries with most conflicts
 - Spill temporaries with few definitions and uses
 - Avoid spilling in inner loops
- Any heuristic is correct

Caches

- Compilers are very good at managing registers
 - Much better than a programmer could be
- Compilers are not good at managing caches
 - This problem is still left to programmers
 - It is still an open question whether a compiler can do anything general to improve performance
- Compilers can, and a few do, perform some simple cache optimization

Cache Optimization

- Consider the loop
 for(\(j = 1; j < 10; j++ \))
 for(\(i = 1; i < 1000000; i++ \))
 \(a[i] *= b[i] \)
- This program has a terrible cache performance
- Why?

Cache Optimization (Cont.)

- Consider the program:
 for(\(i = 1; i < 1000000; i++ \))
 for(\(j = 1; j < 10; j++ \))
 \(a[i] *= b[i] \)
- Computes the same thing
- But with much better cache behavior
- Might actually be more than 10x faster
- A compiler can perform this optimization
 - called loop interchange
Conclusions

- Register allocation is a “must have” optimization in most compilers:
 - Because intermediate code uses too many temporaries
 - Because it makes a big difference in performance
- Graph coloring is a powerful register allocation scheme
- Register allocation is more complicated for CISC machines