Global Optimization

Lecture 37
(From notes by R. Bodik & G. Necula)
Lecture Outline

• Global flow analysis

• Global constant propagation

• Liveness analysis
Local Optimization

Recall the simple basic-block optimizations
- Constant propagation
- Dead code elimination

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \times W \\
Q &:= X + Y \\
\end{align*}
\]

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \times W \\
Q &:= 3 + Y \\
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
A &:= 2 \times X \\
Y &:= 0
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
A &:= 2 \times X \\
Y &:= 0
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

$X := 3$
$B > 0$
$Y := Z + W$
$Y := 0$
$A := 2 \times 3$
Correctness

• How do we know it is OK to globally propagate constants?
• There are situations where it is incorrect:

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
X &:= 4 \\
A &:= 2 \times X \\
Y &:= 0
\end{align*}
\]
Correctness (Cont.)

To replace a use of x by a constant k we must know that:

On every path to the use of x, the last assignment to x is $x := k$.

**
Example 1 Revisited

\[
X := 3 \\
B > 0 \\
Y := Z + W \\
Y := 0 \\
A := 2 \times X
\]
Example 2 Revisited

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
X &:= 4 \\
A &:= 2 \times X \\
Y &:= 0
\end{align*}
\]
Discussion

• The correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of conditionals

• Checking the condition requires global analysis
 - An analysis of the entire control-flow graph for one method body
Global Analysis

Global optimization tasks share several traits:
- The optimization depends on knowing a property \(P \) at a particular point in program execution
- Proving \(P \) at any point requires knowledge of the entire method body
- Property \(P \) is typically undecidable!
Undecidability of Program Properties

• Rice’s theorem: Most interesting dynamic properties of a program are undecidable:
 - Does the program halt on all (some) inputs?
 • This is called the halting problem
 - Is the result of a function F always positive?
 • Assume we can answer this question precisely
 • Take function H and find out if it halts by testing function $F(x)$ { $H(x)$; return 1; } whether it has positive result

• Syntactic properties are decidable!
 - E.g., How many occurrences of “x” are there?

• Theorem does not apply in absence of loops
Conservative Program Analyses

• So, we cannot tell for sure that “x” is always 3
 - Then, how can we apply constant propagation?
• It is OK to be conservative. If the optimization requires P to be true, then want to know either
 - P is definitely true
 - Don’t know if P is true or false
• It is always correct to say “don’t know”
 - We try to say don’t know as rarely as possible
• All program analyses are conservative
Global Analysis (Cont.)

• *Global dataflow analysis* is a standard technique for solving problems with these characteristics

• Global constant propagation is one example of an optimization that requires global dataflow analysis
Global Constant Propagation

- Global constant propagation can be performed at any point where ** holds

- Consider the case of computing ** for a single variable X at all program points
Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with X at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>This statement is not reachable</td>
</tr>
<tr>
<td>c</td>
<td>$X = \text{constant } c$</td>
</tr>
<tr>
<td>*</td>
<td>Don’t know if X is a constant</td>
</tr>
</tbody>
</table>
Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[X := 4 \]
\[A := 2 \times X \]
\[Y := 0 \]
\[X := 3 \]
Using the Information

• Given global constant information, it is easy to perform the optimization
 - Simply inspect the $x = __$ associated with a statement using x
 - If x is constant at that point replace that use of x by the constant

• But how do we compute the properties $x = _$
The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
Explanation

• The idea is to “push” or “transfer” information from one statement to the next

• For each statement s, we compute information about the value of x immediately before and after s

\[
C_{\text{in}}(x,s) = \text{value of } x \text{ before } s \\
C_{\text{out}}(x,s) = \text{value of } x \text{ after } s
\]

(we care about values $\#, *, k$)
Transfer Functions

• Define a *transfer function* that transfers information from one statement to another

• In the following rules, let statement s have immediate predecessor statements p_1, \ldots, p_n
Rule 1

\[\text{if } C_{\text{out}}(x, p_i) = * \text{ for some } i, \text{ then } C_{\text{in}}(x, s) = * \]
Rule 2

If $C_{out}(x, p_i) = c$ and $C_{out}(x, p_j) = d$ and $d \neq c$ then $C_{in}(x, s) = *$
Rule 3

if $C_{out}(x, p_i) = c$ or # for all i, then $C_{in}(x, s) = c$
Rule 4

if $C_{out}(x, p_i) = \#$ for all i,
then $C_{in}(x, s) = \#$
The Other Half

• Rules 1-4 relate the *out* of one statement to the *in* of the successor statement
 - they propagate information *forward* across CFG edges

• Now we need rules relating the *in* of a statement to the *out* of the same statement
 - to propagate information across statements
Rule 5

\[C_{\text{out}}(x, s) = \# \text{ if } C_{\text{in}}(x, s) = \# \]
Rule 6

\[C_{\text{out}}(x, x := c) = c \text{ if } c \text{ is a constant} \]
Rule 7

\[C_{\text{out}}(x, x := f(...)) = * \]
Rule 8

\[C_{\text{out}}(x, y := ...) = C_{\text{in}}(x, y := ...) \quad \text{if} \quad x \neq y \]
An Algorithm

1. For every entry \(s \) to the program, set \(C_{\text{in}}(x, s) = * \)

2. Set \(C_{\text{in}}(x, s) = C_{\text{out}}(x, s) = # \) everywhere else

3. Repeat until all points satisfy 1-8:

 Pick \(s \) not satisfying 1-8 and update using the appropriate rule
The Value #

- To understand why we need #, look at a loop

```
X := 3
B > 0
Y := Z + W
Y := 0
A := 2 * X
A < B
```
Discussion

• Consider the statement \(Y := 0 \)
• To compute whether \(X \) is constant at this point, we need to know whether \(X \) is constant at the two predecessors
 - \(X := 3 \)
 - \(A := 2 \times X \)

• But info for \(A := 2 \times X \) depends on its predecessors, including \(Y := 0 \)!
The Value # (Cont.)

• Because of cycles, all points must have values at all times

• Intuitively, assigning some initial value allows the analysis to break cycles

• The initial value # means “So far as we know, control never reaches this point”
Example

We are done when all rules are satisfied!
Another Example

\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
Y &:= 0 \\
A &:= 2 \times X \\
X &:= 4 \\
A &< B
\end{align*}
Another Example

Another Example

X := 3
B > 0

Y := Z + W

Y := 0

A := 2 * X
X := 4
A < B

X = *
X = # 3

X = # 4

Must continue until all rules are satisfied!
Orderings

• We can simplify the presentation of the analysis by ordering the values

 \[
 \# \ < \ c \ < \ * \\
 \]

• Drawing a picture with “smaller” values drawn lower, we get

 *
 \[
 \ldots -1 \ 0 \ 1 \ \ldots \\
 \#
 \]
Orderings (Cont.)

• * is the largest value, # is the least
 - All constants are in between and incomparable

• Let lub be the least-upper bound in this ordering

• Rules 1-4 can be written using lub:
 \[C_{in}(x, s) = lub \{ C_{out}(x, p) \mid p \text{ is a predecessor of } s \} \]
Termination

• Simply saying “repeat until nothing changes” doesn’t guarantee that eventually nothing changes

• The use of lub explains why the algorithm terminates
 - Values start as # and only increase
 - # can change to a constant, and a constant to *
 - Thus, $C(x, s)$ can change at most twice
Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps =
Number of $C_$(....) values computed * 2 =
Number of program statements * 4
Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, $X := 3$ is dead (assuming this is the entire CFG)
Live and Dead

- The first value of x is **dead** (never used)

- The second value of x is **live** (may be used)

\[
\begin{align*}
X &:= 3 \\
X &:= 4 \\
Y &:= X \\
\end{align*}
\]
Liveness

A variable x is *live at statement s* if
- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x
Global Dead Code Elimination

- A statement $x := \ldots$ is dead code if x is dead after the assignment

- Dead statements can be deleted from the program

- But we need liveness information first . . .
Computing Liveness

• We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation.

• Liveness is simpler than constant propagation, since it is a boolean property (true or false).
Liveness Rule 1

\[L_{\text{out}}(x, p) = \lor \{ L_{\text{in}}(x, s) \mid s \text{ a successor of } p \} \]
Liveness Rule 2

\[\text{Lin}(x, s) = \text{true} \text{ if } s \text{ refers to } x \text{ on the rhs} \]
Liveness Rule 3

\[L_{in}(x, x := e) = \text{false} \text{ if } e \text{ does not refer to } x \]
Liveness Rule 4

$L_{in}(x, s) = L_{out}(x, s)$ if s does not refer to x
Algorithm

1. Let all \(L(...) = \text{false} \) initially

2. Repeat until all statements \(s \) satisfy rules 1-4
 Pick \(s \) where one of 1-4 does not hold and update using the appropriate rule
Another Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
\[X := X \times X \]
\[X := 4 \]
\[A < B \]

\(L(X) = \text{false} \)
\(L(X) = \text{true} \)
\(L(X) = \text{false} \)

Dead code
Termination

• A value can change from `false` to `true`, but not the other way around

• Each value can change only once, so termination is guaranteed

• Once the analysis is computed, it is simple to eliminate dead code
Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a *forwards* analysis: information is pushed from inputs to outputs

Liveness is a *backwards* analysis: information is pushed from outputs back towards inputs
Analysis

• There are many other global flow analyses

• Most can be classified as either forward or backward

• Most also follow the methodology of local rules relating information between adjacent program points