Intermediate Code, Local Optimizations

Lecture 35
(Adapted from notes by R. Bodik and G. Necula)

Lecture Outline

- Intermediate code
- Local optimizations
- Next time: global optimizations

Code Generation Summary

- We have discussed
 - Runtime organization
 - Simple stack machine code generation
 - Improvements to stack machine code generation
- Our compiler goes directly from AST to assembly language
 - And does not perform optimizations
- Most real compilers use intermediate languages

Why Intermediate Languages?

- When to perform optimizations
 - On AST
 - Pro: Machine independent
 - Cons: Too high level
 - On assembly language
 - Pro: Exposes optimization opportunities
 - Cons: Machine dependent
 - Cons: Must reimplement optimizations when retargetting
 - On an intermediate language
 - Pro: Machine independent
 - Pro: Exposes optimization opportunities
 - Cons: One more language to worry about

Intermediate Languages

- Each compiler uses its own intermediate language
 - IL design is still an active area of research
- Intermediate language = high-level assembly language
 - Uses register names, has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 - E.g., push translates to several assembly instructions
 - Most opcodes correspond directly to assembly opcodes

Three-Address Intermediate Code

- Each instruction is of the form
 \[x := y \text{ op } z \]
 - \(y \) and \(z \) can be only registers or constants
 - Just like assembly
- Common form of intermediate code
 - The AST expression \(x + y \times z \) is translated as
 \[t_1 := y \times z \]
 \[t_2 := x + t_1 \]
 - Each subexpression has a "home" in a temporary
Generating Intermediate Code

- Similar to assembly code generation
- Major difference
 - Use any number of IL registers to hold intermediate results

Generating Intermediate Code (Cont.)

- Igen(e, t) function generates code to compute the value of e in register t
- Example:

 \[
 \text{igen}(e_1 \cdot e_2, t) = \\
 \text{igen}(e_1, t_1) \quad (t_1 \text{ is a fresh register}) \\
 \text{igen}(e_2, t_2) \quad (t_2 \text{ is a fresh register}) \\
 t := t_1 \cdot t_2
 \]

 - Unlimited number of registers
 ⇒ simple code generation

Intermediate Code. Notes

- Intermediate code is discussed in Ch. 8
 - Required reading
- You should be able to manipulate intermediate code

An Intermediate Language

\[
\begin{align*}
 P & \to SP | \\
 S & \to \text{id := id op id} \\
 & \mid \text{id := id} \\
 & \mid \text{id := push id} \\
 & \mid \text{id := pop} \\
 & \mid \text{if id relop id goto \text{L}} \\
 & \mid \text{L:} \\
 & \mid \text{jump L}
\end{align*}
\]

 - id's are register names
 - Constants can replace id's
 - Typical operators: +, -, *

Definition. Basic Blocks

- A basic block is a maximal sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)
- Idea:
 - Cannot jump in a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - Each instruction in a basic block is executed after all the preceding instructions have been executed

Basic Block Example

- Consider the basic block
 1. \text{L:}
 2. \text{t := 2 \cdot x}
 3. \text{w := t + x}
 4. \text{if w > 0 goto L'}
- No way for (3) to be executed without (2) having been executed right before
 - We can change (3) to \text{w := 3 \cdot x}
 - Can we eliminate (2) as well?
Definition. Control-Flow Graphs

- A control-flow graph is a directed graph with
 - Basic blocks as nodes
 - An edge from block A to block B if the execution can flow from the last instruction in A to the first instruction in B
 - E.g., the last instruction in A is `jump L_B`
 - E.g., the execution can fall-through from block A to block B

- Frequently abbreviated as CFG

Control-Flow Graphs. Example.

- The body of a method (or procedure) can be represented as a control-flow graph
- There is one initial node
- All "return" nodes are terminal

Optimization Overview

- Optimization seeks to improve a program’s utilization of some resource
 - Execution time (most often)
 - Code size
 - Network messages sent
 - Battery power used, etc.
- Optimization should not alter what the program computes
 - The answer must still be the same

A Classification of Optimizations

- For languages like C and Cool there are three granularities of optimizations
 1. Local optimizations
 - Apply to a basic block in isolation
 2. Global optimizations
 - Apply to a control-flow graph (method body) in isolation
 3. Inter-procedural optimizations
 - Apply across method boundaries
- Most compilers do (1), many do (2) and very few do (3)

Cost of Optimizations

- In practice, a conscious decision is made not to implement the fanciest optimization known
- Why?
 - Some optimizations are hard to implement
 - Some optimizations are costly in terms of compilation time
 - The fancy optimizations are both hard and costly
- The goal: maximum improvement with minimum of cost

Local Optimizations

- The simplest form of optimizations
- No need to analyze the whole procedure body
 - Just the basic block in question
- Example: algebraic simplification
Algebraic Simplification

- **Some statements can be deleted**

 \[x := x + 0 \]

 \[x := x \times 1 \]

- **Some statements can be simplified**

 \[x := x \times 0 \Rightarrow x := 0 \]

 \[y := y \times 2 \Rightarrow y := y \times y \]

 \[x := x \times 8 \Rightarrow x := x < 3 \]

 \[x := x \times 15 \Rightarrow t := x < 4; x := t - x \]

 (on some machines \(<\) is faster than \(*\); but not on all!)

Constant Folding

- Operations on constants can be computed at compile time.

 In general, if there is a statement

 \[x := y \mathbin{\circ} z \]

 - And \(y\) and \(z\) are constants

 - Then \(y \mathbin{\circ} z\) can be computed at compile time.

 Example: \(x := 2 + 2 \Rightarrow x := 4\)

 Example: if \(2 \times 0\) jump \(L\) can be deleted

 When might constant folding be dangerous?

Flow of Control Optimizations

- Eliminating unreachable code:
 - Code that is unreachable in the control-flow graph

 - Basic blocks that are not the target of any jump or "fall through" from a conditional

 - Such basic blocks can be eliminated

- Why would such basic blocks occur?

 - Removing unreachable code makes the program smaller

 - And sometimes also faster

- Due to memory cache effects (increased spatial locality)

Single Assignment Form

- Some optimizations are simplified if each assignment is to a temporary that has not appeared already in the basic block.

- Intermediate code can be rewritten to be in single assignment form

 \[
 \begin{align*}
 x &:= a + y \\
 a &:= x \\
 x &:= a \times x \\
 b &:= x + a \\
 \end{align*}
 \]

 \[
 \begin{align*}
 x_1 &:= a \times x \\
 b_1 &:= x_1 + a_1 \\
 \end{align*}
 \]

 \((x_1 \text{ and } a_1 \text{ are fresh temporaries}) \)

Common Subexpression Elimination

- Assume

 - Basic block is in single assignment form

- All assignments with same rhs compute the same value

- Example:

 \[
 \begin{align*}
 x &:= y + z \\
 y &:= y + z \\
 w &:= y + z
 \end{align*}
 \]

- Why is single assignment important here?

Copy Propagation

- If \(w \mathbin{\circ} x\) appears in a block, all subsequent uses of \(w\) can be replaced with uses of \(x\)

- Example:

 \[
 \begin{align*}
 b &:= z + y \\
 b &:= z + y \\
 a &:= b \\
 x &:= z \times a \\
 x &:= z \times b
 \end{align*}
 \]

- This does not make the program smaller or faster but might enable other optimizations

 - Constant folding

 - Dead code elimination

 - Again, single assignment is important here.
Copy Propagation and Constant Folding

- Example:

 \[
 \begin{array}{ll}
 a & := 5 \\
 x & := 2 \cdot a \\
 y & := x + 6 \\
 t & := x \cdot y
 \end{array}
 \Rightarrow
 \begin{array}{ll}
 a & := 5 \\
 x & := 10 \\
 y & := 16 \\
 t & := x \cdot 4
 \end{array}
 \]

Dead Code Elimination

If

- \(w := \text{rhs} \) appears in a basic block
- \(w \) does not appear anywhere else in the program

Then

the statement \(w := \text{rhs} \) is dead and can be eliminated
- Dead \(w \) does not contribute to the program’s result

Example: (\(a \) is not used anywhere else)

\[
\begin{array}{ll}
 x & := z + y \\
 a & := x \\
 b & := z + y \\
 a & := b \\
 x & := 2 \cdot a
 \end{array}
 \Rightarrow
 \begin{array}{ll}
 a & := b \\
 x & := 2 \cdot b
 \end{array}
 \]

Applying Local Optimizations

- Each local optimization does very little by itself
- Typically optimizations interact
 - Performing one optimizations enables other opt.
- Typical optimizing compilers repeatedly perform optimizations until no improvement is possible
 - The optimizer can also be stopped at any time to limit the compilation time

An Example

- Initial code:
 \[
 \begin{array}{ll}
 a & := x \cdot 2 \\
 b & := 3 \\
 c & := x \\
 d & := c \cdot c \\
 e & := b \cdot 2 \\
 f & := a + d \\
 g & := e \cdot f
 \end{array}
 \]

 \[
 \begin{array}{ll}
 a & := x \cdot x \\
 b & := 3 \\
 c & := x \\
 d & := c \cdot c \\
 e & := b \cdot b \\
 f & := a + d \\
 g & := e \cdot f
 \end{array}
 \]
An Example

• Copy propagation:
 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := c \times c \]
 \[e := b + b \]
 \[f := a + d \]
 \[g := e \times f \]

An Example

• Copy propagation:
 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := x \times x \]
 \[e := 3 + 3 \]
 \[f := a + d \]
 \[g := e \times f \]

An Example

• Constant folding:
 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := x \times x \]
 \[e := 3 + 3 \]
 \[f := a + d \]
 \[g := e \times f \]

An Example

• Constant folding:
 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := x \times x \]
 \[e := 6 \]
 \[f := a + d \]
 \[g := e \times f \]

An Example

• Common subexpression elimination:
 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := x \times x \]
 \[e := b \]
 \[f := a + d \]
 \[g := e \times f \]

An Example

• Common subexpression elimination:
 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := a \]
 \[e := 6 \]
 \[f := a + d \]
 \[g := e \times f \]
An Example

- Copy propagation:

 \[
 \begin{align*}
 a &:= x \times x \\
 b &:= 3 \\
 c &:= x \\
 d &:= a \\
 e &:= 6 \\
 f &:= a + d \\
 g &:= e \times f
 \end{align*}
 \]

An Example

- Dead code elimination:

 \[
 \begin{align*}
 a &:= x \times x \\
 b &:= 3 \\
 c &:= x \\
 d &:= a \\
 e &:= 6 \\
 f &:= a + a \\
 g &:= 6 \times f
 \end{align*}
 \]

 This is the final form

Peephole Optimizations on Assembly Code

- The optimizations presented before work on intermediate code
 - They are target independent
 - But they can be applied on assembly language also
- **Peephole optimization** is an effective technique for improving assembly code
 - The "peephole" is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent (but faster) one

Peephole Optimizations (Cont.)

- Write peephole optimizations as replacement rules
 \[
 i_1 \rightarrow j_1, \ldots, i_n \rightarrow j_n
 \]
 where the rhs is the improved version of the lhs
- Example:
 - move a b, move b a → move a b
 - Works if move b a is not the target of a jump
- Another example
 - addiu a i, addiu a a j → addiu a a $i+j$
Peephole Optimizations (Cont.)

- Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: `addiu $a $b 0` → `move $a $b`
 - Example: `move $a $a` →
 - These two together eliminate `addiu $a $a 0`
- Just like for local optimizations, peephole optimizations need to be applied repeatedly to get maximum effect

Local Optimizations. Notes.

- Intermediate code is helpful for many optimizations
- Many simple optimizations can still be applied on assembly language
- "Program optimization" is grossly misnamed
 - Code produced by "optimizers" is not optimal in any reasonable sense
 - "Program improvement" is a more appropriate term
- Next: global optimizations