Lexical Analysis

Lecture 2-4

Notes by G. Necula, with additions by P. Hilfinger
Administrivia

- Moving to 60 Evans on Wednesday
- HW1 available
- Pyth manual available on line.
- Please log into your account and electronically register today.
- Register your team with “make-team”. See class announcement page. Project #1 available Friday.
- Use “submit hw1” to submit your homework this week.
- Section 101 (9AM) is gone.
Outline

• **Informal sketch of lexical analysis**
 - Identifies tokens in input string

• **Issues in lexical analysis**
 - Lookahead
 - Ambiguities

• **Specifying lexers**
 - Regular expressions
 - Examples of regular expressions
The Structure of a Compiler

Today we start Optimization

Source \[\xrightarrow{\text{Lexical analysis}}\] Tokens \[\xrightarrow{\text{Parsing}}\] Interm. Language \[\xrightarrow{\text{Code Gen.}}\] Machine Code
Lexical Analysis

• What do we want to do? Example:

 \[
 \begin{align*}
 \text{if } (i == j) \\
 &z = 0; \\
 \text{else} \\
 &z = 1;
 \end{align*}
 \]

• The input is just a sequence of characters:
 \[
 \begin{align*}
 \text{if } (i == j) \\
 &z = 0; \\
 \text{else} \\
 &z = 1;
 \end{align*}
 \]

• **Goal:** Partition input string into substrings
 - And classify them according to their role
What's a Token?

• Output of lexical analysis is a stream of tokens

• A token is a syntactic category
 - In English: noun, verb, adjective, ...
 - In a programming language: Identifier, Integer, Keyword, Whitespace, ...

• Parser relies on the token distinctions:
 - E.g., identifiers are treated differently than keywords
Tokens

- Tokens correspond to **sets of strings**:
 - Identifiers: *strings of letters or digits, starting with a letter*
 - Integers: *non-empty strings of digits*
 - Keywords: "else" or "if" or "begin" or ...
 - Whitespace: *non-empty sequences of blanks, newlines, and tabs*
 - OpenPars: *left-parentheses*
Lexical Analyzer: Implementation

- An implementation must do two things:

 1. Recognize substrings corresponding to tokens

 2. Return:
 1. The type or syntactic category of the token,
 2. the value or lexeme of the token (the substring itself).
Example

• Our example again:

  ```
  if (i == j)
  tz = 0;
  else
  tz = 1;
  ```

• Token-lexeme pairs returned by the lexer:
 - (Whitespace, `\t``
 - (Keyword, “if”)
 - (OpenPar, “(“)
 - (Identifier, “i”)
 - (Relation, “==”)
 - (Identifier, “j”)
Lexical Analyzer: Implementation

- The lexer usually discards “uninteresting” tokens that don’t contribute to parsing.

- Examples: Whitespace, Comments

- Question: What happens if we remove all whitespace and all comments prior to lexing?
Lookahead.

• Two important points:
 1. The goal is to partition the string. This is implemented by reading left-to-right, recognizing one token at a time

 2. “Lookahead” may be required to decide where one token ends and the next token begins
 - Even our simple example has lookahead issues
 i vs. if
 = vs. ==
Next

- We need
 - A way to describe the lexemes of each token
 - A way to resolve ambiguities
 - Is if two variables i and f?
 - Is == two equal signs = =?
Regular Languages

• There are several formalisms for specifying tokens

• Regular languages are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations
Languages

Def. Let Σ be a set of characters. A *language over* Σ is a set of strings of characters drawn from Σ.

(Σ is called the *alphabet*.)
Examples of Languages

• Alphabet = English characters
• Language = English sentences

• Not every string on English characters is an English sentence

• Alphabet = ASCII
• Language = C programs

• Note: ASCII character set is different from English character set
Notation

• Languages are sets of strings.

• Need some notation for specifying which sets we want

• For lexical analysis we care about regular languages, which can be described using regular expressions.
Regular Expressions and Regular Languages

- Each regular expression is a notation for a regular language (a set of words)

- If A is a regular expression then we write $L(A)$ to refer to the language denoted by A
Atomic Regular Expressions

• Single character: ‘c’
 \[L('c') = \{ "c" \} \] (for any \(c \in \Sigma \))

• Concatenation: \(AB \) (where \(A \) and \(B \) are reg. exp.)
 \[L(AB) = \{ ab \mid a \in L(A) \text{ and } b \in L(B) \} \]

• Example: \(L('i' 'f') = \{ "if" \} \)
 (we will abbreviate ‘i’ ‘f’ as ‘if’)
Compound Regular Expressions

• Union

\[L(A \mid B) = L(A) \cup L(B) \]
\[= \{ s \mid s \in L(A) \text{ or } s \in L(B) \} \]

• Examples:

 - ‘if’ | ‘then’ | ‘else’ = \{ “if”, “then”, “else”\}
 - ‘0’ | ‘1’ | … | ‘9’ = \{ “0”, “1”, …, “9” \}
 (note the … are just an abbreviation)

• Another example:

 \[L((‘0’ \mid ‘1’) (‘0’ \mid ‘1’)) = \{ “00”, “01”, “10”, “11” \} \]
More Compound Regular Expressions

- So far we do not have a notation for infinite languages
- Iteration: A^*
 $$L(A^*) = \{ "" \} | L(A) | L(AA) | L(AAA) | ...$$
- Examples:
 '0'*$ = \{ "", "0", "00", "000", ... \}$
 '1' '0'*$ = \{ strings starting with 1 and followed by 0's \}$
- Epsilon: ε
 $$L(\varepsilon) = \{ "" \}$$
Example: Keyword

- Keyword: "else" or "if" or "begin" or ...

 'else' | 'if' | 'begin' | ...

(‘else’ abbreviates ‘e’ ‘l’ ‘s’ ‘e’)
Example: Integers

Integer: a non-empty string of digits

digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

number = digit digit*

Abbreviation: $A^+ = A \ A^*$
Example: Identifier

Identifier: strings of letters or digits, starting with a letter

\[
\text{letter} = 'A' \mid \ldots \mid 'Z' \mid 'a' \mid \ldots \mid 'z'
\]

\[
\text{identifier} = \text{letter} (\text{letter} \mid \text{digit})^*
\]

Is \((\text{letter}^* \mid \text{digit}^*)\) the same as \((\text{letter} \mid \text{digit})^*\) ?
Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

(' ' | \t | \n)+

(Can you spot a subtle omission?)
Example: Phone Numbers

- Regular expressions are all around you!
- Consider (510) 643-1481

\[\Sigma = \{ 0, 1, 2, 3, \ldots, 9, (,), - \} \]

\[\text{area} = \text{digit}^3 \]
\[\text{exchange} = \text{digit}^3 \]
\[\text{phone} = \text{digit}^4 \]
\[\text{number} = '(', \text{area}, ')', \text{exchange}, '-', \text{phone} \]
Example: Email Addresses

• Consider *necula@cs.berkeley.edu*

\[
\Sigma = \text{letters \, [\{ ., @ \}]} \\
\text{name} = \text{letter}^+ \\
\text{address} = \text{name} \ '@' \ \text{name} \ (\ '.' \ \text{name})^*
\]
Summary

• Regular expressions describe many useful languages
• Next: Given a string s and a R.E. R, is $s \in L(R)$?
• But a yes/no answer is not enough!
• Instead: partition the input into lexemes

• We will adapt regular expressions to this goal
Next: Outline

• Specifying lexical structure using regular expressions

• Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions
 RegExp => NFA => DFA => Tables
1. Select a set of tokens
 - Number, Keyword, Identifier, ...

2. Write a R.E. for the lexemes of each token
 - Number = digit*
 - Keyword = ‘if’ | ‘else’ | ...
 - Identifier = letter (letter | digit)*
 - OpenPar = ‘(‘
 - ...

Regular Expressions => Lexical Spec. (1)
Regular Expressions => Lexical Spec. (2)

3. Construct R, matching all lexemes for all tokens

\[R = \text{Keyword} \mid \text{Identifier} \mid \text{Number} \mid \ldots \]
\[= R_1 \mid R_2 \mid R_3 \mid \ldots \]

Facts: If $s \in L(R)$ then s is a lexeme
- Furthermore $s \in L(R_i)$ for some “i”
- This “i” determines the token that is reported
Regular Expressions => Lexical Spec. (3)

4. Let the input be $x_1...x_n$
 ($x_1 ... x_n$ are characters in the language alphabet)
 • For $1 \leq i \leq n$ check

 $x_1...x_i \in L(R)\ ?$

5. It must be that

 $x_1...x_i \in L(R_j)$ for some i and j

6. Remove $x_1...x_i$ from input and go to (4)
Lexing Example

\[R = \text{Whitespace} \mid \text{Integer} \mid \text{Identifier} \mid '+' \]

- Parse "f+3 +g"
 - "f" matches \(R \), more precisely Identifier
 - "+" matches \(R \), more precisely '+'
 - ...
 - The token-lexeme pairs are
 (Identifier, "f"), ('+', '+'), (Integer, "3")
 (Whitespace, " "), ('+', '+'), (Identifier, "g")

- We would like to drop the \text{Whitespace} tokens
 - after matching \text{Whitespace}, continue matching
Ambiguities (1)

- There are ambiguities in the algorithm
- Example:
 \[R = \text{Whitespace} \mid \text{Integer} \mid \text{Identifier} \mid '+' \]
- Parse “foo+3”
 - “f” matches \(R \), more precisely \(\text{Identifier} \)
 - But also “fo” matches \(R \), and “foo”, but not “foo+”
- How much input is used? What if
 - \(x_1 \ldots x_i \in L(R) \) and also \(x_1 \ldots x_K \in L(R) \)
 - “Maximal munch” rule: Pick the longest possible substring that matches \(R \)
More Ambiguities

\[R = \text{Whitespace} \mid '\text{new}' \mid \text{Integer} \mid \text{Identifier} \]

- Parse “new foo”
 - “new” matches \(R \), more precisely ‘new’
 - but also Identifier, which one do we pick?

- In general, if \(x_1 \ldots x_i \in L(R_j) \) and \(x_1 \ldots x_i \in L(R_k) \)
 - Rule: use rule listed first (\(j \) if \(j < k \))

- We must list ‘new’ before Identifier
Error Handling

\[R = \text{Whitespace} | \text{Integer} | \text{Identifier} | '+' \]

- Parse "=56"
 - No prefix matches \(R \): not "=" nor "=5" nor "=56"
- Problem: Can’t just get stuck ...
- Solution:
 - Add a rule matching all “bad” strings; and put it last
- Lexer tools allow the writing of:
 \[R = R_1 \mid \ldots \mid R_n \mid \text{Error} \]
 - Token \text{Error} matches if nothing else matches
Summary

• Regular expressions provide a concise notation for string patterns
• Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
• Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
Finite Automata

- Regular expressions = specification
- Finite automata = implementation

A finite automaton consists of
- An input alphabet Σ
- A set of states S
- A start state s
- A set of accepting states $F \subseteq S$
- A set of transitions $\text{state} \rightarrow^{\text{input}} \text{state}$
Finite Automata

- Transition
 \[s_1 \xrightarrow{a} s_2 \]

- Is read
 In state \(s_1 \) on input “a” go to state \(s_2 \)

- If end of input
 - If in accepting state => accept, otherwise => reject

- If no transition possible => reject
Finite Automata State Graphs

- A state

- The start state

- An accepting state

- A transition
A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state
Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: \{0,1\}

Check that “1110” is accepted but “110…” is not
And Another Example

- Alphabet \{0,1\}
- What language does this recognize?
And Another Example

- Alphabet still \{ 0, 1 \}

- The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

• Another kind of transition: ε-moves

• Machine can move from state A to state B without reading input
Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ϵ-moves

- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ϵ-moves

- Finite automata have finite memory
 - Need only to encode the current state
Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

• An NFA can get into multiple states

• Input: \[\text{1 0 1} \]

• Rule: NFA accepts if it \textit{can} get in a final state
NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)

• For a given language the NFA can be simpler than the DFA

NFA

DFA

• DFA can be exponentially larger than NFA
Regular Expressions to Finite Automata

- High-level sketch

Regular expressions → NFA → DFA

Lexical Specification → Table-driven Implementation of DFA
Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

- For ε

- For input a
Regular Expressions to NFA (2)

• For AB

• For A | B
Regular Expressions to NFA (3)

- For A^*
Example of RegExp \(\rightarrow\) NFA conversion

- Consider the regular expression \((1 \mid 0)^*1\)
- The NFA is
Next

- Regular expressions
- Lexical Specification
- Table-driven Implementation of DFA
NFA to DFA. The Trick

• Simulate the NFA

• Each state of resulting DFA
 = a non-empty subset of states of the NFA

• Start state
 = the set of NFA states reachable through \(\epsilon \)-moves from NFA start state

• Add a transition \(S \rightarrow^a S' \) to DFA iff
 - \(S' \) is the set of NFA states reachable from the states in \(S \) after seeing the input \(a \)
 • considering \(\epsilon \)-moves as well
NFA -> DFA Example
NFA to DFA. Remark

- An NFA may be in many states at any time

- How many different states?

- If there are N states, the NFA must be in some subset of those N states

- How many non-empty subsets are there?
 - $2^N - 1 = \text{finitely many, but exponentially many}$
Implementation

• A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $S_i \rightarrow a S_k$ define $T[i,a] = k$

• DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools such as flex or jflex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations
Perl’s “Regular Expressions”

- Some kind of pattern-matching feature now common in programming languages.
- Perl’s is widely copied (cf. Java, Python).
- Not regular expressions, despite name.
 - E.g., pattern /A (\S+) is a $1/ matches “A spade is a spade” and “A deal is a deal”, but not “A spade is a shovel”
 - But no regular expression recognizes this language!
 - Capturing substrings with (...) itself is an extension
Implementing Perl Patterns (Sketch)

- Can use NFAs, with some modification
- Implement an NFA as one would a DFA + use backtracking search to deal with states with nondeterministic choices.
 - Add extra states (with \(\varepsilon \) transitions) for parentheses.
 - "(" state records place in input as side effect.
 - ")" state saves string started at matching "(".
 - \(\$n \) matches input with stored value.
- Backtracking much slower than DFA implementation.