Type Checking

Lecture 19
(from notes by G. Necula)
Administrivia

• Test run this evening around midnight
• Test is next Wednesday at 6 in 306 Soda
• Please let me know soon if you need an alternative time for the test.
• Please use bug-submit to submit problems/questions
• Review session Sunday in 310 Soda 4-6PM
Types

- What is a type?
 - The notion varies from language to language

- Consensus
 - A set of values
 - A set of operations on those values

- Classes are one instantiation of the modern notion of type
Why Do We Need Type Systems?

Consider the assembly language fragment

```
addi $r1, $r2, $r3
```

What are the types of $r1, $r2, $r3?
Types and Operations

• Most operations are legal only for values of some types

 - It doesn’t make sense to add a function pointer and an integer in C

 - It does make sense to add two integers

 - But both have the same assembly language implementation!
Type Systems

• A language’s type system specifies which operations are valid for which types

• The goal of type checking is to ensure that operations are used with the correct types
 - Enforces intended interpretation of values, because nothing else will!

• Type systems provide a concise formalization of the semantic checking rules
What Can Types do For Us?

- Can detect certain kinds of errors
- Memory errors:
 - Reading from an invalid pointer, etc.
- Violation of abstraction boundaries:

```java
class FileSystem {
    open(x : String) : File {
        ...
    }
    ...
}
class Client {
    f(fs : FileSystem) {
        File fdesc <- fs.open("foo")
        ...
    } -- f cannot see inside fdesc!
}
```
Type Checking Overview

• Three kinds of languages:

 - *Statically typed*: All or almost all checking of types is done as part of compilation (*C, Java, Cool*)

 - *Dynamically typed*: Almost all checking of types is done as part of program execution (*Scheme*)

 - *Untyped*: No type checking (*machine code*)
The Type Wars

- Competing views on static vs. dynamic typing
- Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks
- Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping easier in a dynamic type system
The Type Wars (Cont.)

• In practice, most code is written in statically typed languages with an “escape” mechanism
 - Unsafe casts in C, native methods in Java, unsafe modules in Modula-3
Type Inference

- *Type Checking* is the process of checking that the program obeys the type system

- Often involves inferring types for parts of the program
 - Some people call the process *type inference* when inference is necessary
Rules of Inference

• We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions (for the lexer)
 - Context-free grammars (for the parser)

• The appropriate formalism for type checking is logical rules of inference
Why Rules of Inference?

- Inference rules have the form
 \[\text{If Hypothesis is true, then Conclusion is true} \]

- Type checking computes via reasoning
 \[\text{If } E_1 \text{ and } E_2 \text{ have certain types, then } E_3 \text{ has a certain type} \]

- Rules of inference are a compact notation for “If-Then” statements
From English to an Inference Rule

• The notation is easy to read (with practice)

• Start with a simplified system and gradually add features

• Building blocks
 - Symbol \wedge is “and”
 - Symbol \Rightarrow is “if-then”
 - $x:T$ is “x has type T”
From English to an Inference Rule (2)

If e_1 has type Int and e_2 has type Int, then $e_1 + e_2$ has type Int

$(e_1 \text{ has type } \text{Int} \land e_2 \text{ has type } \text{Int}) \Rightarrow e_1 + e_2 \text{ has type } \text{Int}$

$(e_1: \text{Int} \land e_2: \text{Int}) \Rightarrow e_1 + e_2: \text{Int}$
From English to an Inference Rule (3)

The statement
\[(e_1: \text{Int} \land e_2: \text{Int}) \Rightarrow e_1 + e_2: \text{Int}\]
is a special case of
\[(\text{Hypothesis}_1 \land \ldots \land \text{Hypothesis}_n) \Rightarrow \text{Conclusion}\]

This is an inference rule
Notation for Inference Rules

• By tradition inference rules are written

 \[\vdash \text{Hypothesis}_1 \ldots \vdash \text{Hypothesis}_n \]

 \[\vdash \text{Conclusion} \]

• Type rules have hypotheses and conclusions of the form:

 \[\vdash e : T \]

• \(\vdash \) means “we can prove that . . .”
Two Rules

\[|- \; \text{add} \quad \begin{array}{l}
\vdash \; i : \text{Int} \\
\vdash \; e_1 : \text{Int} \\
\vdash \; e_2 : \text{Int}
\end{array} \quad \text{[Add]} \quad \vdash \; e_1 + e_2 : \text{Int} \]
Two Rules (Cont.)

- These rules give templates describing how to type integers and + expressions
- By filling in the templates, we can produce complete typings for expressions
- We can fill the template with ANY expression!
- Logic nerds: Why is the following correct?

\[
\begin{align*}
\vdash \text{true} : \text{Int} & \quad \vdash \text{false} : \text{Int} \\
\hline \\
\vdash \text{true} + \text{false} : \text{Int}
\end{align*}
\]
Example: $1 + 2$

\[
\begin{array}{c}
\vdash 1 : \text{Int} \\
\hline
\vdash 2 : \text{Int} \\
\hline
\vdash 1 + 2 : \text{Int}
\end{array}
\]
Soundness

• A type system is **sound** if
 - Whenever $\vdash e : T$
 - Then e evaluates to a value of type T

• We only want sound rules
 - But some sound rules are better than others; here’s one that’s not very useful:

\[
\begin{align*}
\vdash i : \text{Any} \\
\vdash i : \text{Any} \\
\end{align*}
\]
(i is an integer)
Type Checking Proofs

- Type checking proves facts $e : T$
 - One type rule is used for each kind of expression

- In the type rule used for a node e:
 - The hypotheses are the proofs of types of e's subexpressions
 - The conclusion is the proof of type of e
Rules for Constants

\[
\begin{align*}
&\text{False : } \text{Bool} \\
&\text{s : String} \\
&s \text{ is a string constant}
\end{align*}
\]
Object Creation Example

| T() : T [New] (T denotes a class with parameterless constructor) |
Two More Rules (Not From Pyth)

\[
\frac{\vdash e : \text{Bool} \quad \vdash \text{not } e : \text{Bool}}{\vdash \text{not } e : \text{Bool}} \quad \text{[Not]}
\]

\[
\frac{\vdash e_1 : \text{Bool}}{\vdash e_2 : \text{T}} \quad \frac{\vdash e_1 : \text{Bool}}{\vdash e_2 : \text{T}} \quad \frac{\vdash \text{while } e_1 \text{ loop } e_2 \text{ pool} : \text{Object}}{\vdash \text{while } e_1 \text{ loop } e_2 \text{ pool} : \text{Object}} \quad \text{[Loop]}
\]
Typing: Example

• Typing for `while not false loop 1 + 2 * 3 pool`

```

while    loop   pool   :   Object

not    :   Bool

false  :   Bool

+   :   Int

1    :   Int

1 * 2  :   Int

2 :   Int

3 :   Int
```
Typing Derivations

• The typing reasoning can be expressed as a tree:

\[
\begin{array}{c}
|- \text{false} : \text{Bool} \\
\hline
|- \text{not false} : \text{Bool} \\
\hline
\begin{array}{c}
|- \text{false} : \text{Bool} \\
\hline
|- \text{not false} : \text{Bool} \\
\hline
\begin{array}{c}
|- 2 : \text{Int} \\
\hline
|- 3 : \text{Int} \\
\hline
|- 1 : \text{Int} \\
\hline
|- 2 \times 3 : \text{Int} \\
\hline
|- 1 + 2 \times 3 : \text{Int} \\
\hline
|- \text{while not false loop 1 + 2 \times 3 : Object} \\
\end{array}
\end{array}
\end{array}
\]

• The root of the tree is the whole expression
• Each node is an instance of a typing rule
• Leaves are the rules with no hypotheses
A Problem

• What is the type of a variable reference?

\[
\vdash x : ? \quad [\text{Var}] \quad (x \text{ is an identifier})
\]

• This rules does not have enough information to give a type.
 - We need a hypothesis of the form “we are in the scope of a declaration of \(x \) with type \(T \)"
A Solution: Put more information in the rules!

- **A type environment gives types for free variables**
 - A *type environment* is a mapping from **Identifiers** to **Types**
 - A variable is **free** in an expression if:
 - The expression contains an occurrence of the variable that refers to a declaration outside the expression
 - E.g. in the expression “x”, the variable “x” is free
 - E.g. in “(lambda (x) (+ x y))” only “y” is free
 - E.g. in “(+ x (lambda (x) (+ x y)))” both “x” and “y” are free
Type Environments

Let \(O \) be a function from Identifiers to Types

The sentence \(O \vdash e : T \)

is read: Under the assumption that variables in the current scope have the types given by \(O \), it is provable that the expression \(e \) has the type \(T \)
Modified Rules

The type environment is added to the earlier rules:

\[
\begin{align*}
O & \vdash i : \text{Int} & \quad \text{[Int] (i is an integer)} \\
O & \vdash e_1 : \text{Int} \\
O & \vdash e_2 : \text{Int} \\
\hline
O & \vdash e_1 + e_2 : \text{Int} \\
\end{align*}
\]
New Rules

And we can write new rules:

\[O \mid- x : T \quad [\text{Var}] \quad (\text{if } O(x) = T) \]
Lambda (from Python)

\[O[\text{Any}/x] |- e_1 : T_1 \]

\[O |- \text{lambda x: } e_1 : \text{Any } \rightarrow T_1 \quad \text{[Lambda]} \]

\[O[\text{Any}/x] \text{ means } "O \text{ modified to map } x \text{ to Any and behaving as } O \text{ on all other arguments";} \]

\[O[\text{Any}/x] (x) = \text{Any} \]

\[O[\text{Any}/x] (y) = O(y), \ x \text{ and } y \text{ distinct} \]
Let (From the COOL Language)

• Let statement creates a variable x with given type T_0 that is then defined throughout e_1

\[
\frac{O[T_0/x] |- e_1 : T_1}{O |- \text{let } x : T_0 \text{ in } e_1 : T_1} \quad \text{[Let-No-Init]}
\]
Let. Example.

• Consider the Cool expression

\[
\text{let } x : T_0 \text{ in } (\text{let } y : T_1 \text{ in } E_{x, y}) + (\text{let } x : T_2 \text{ in } F_{x, y})
\]

(where \(E_{x, y}\) and \(F_{x, y}\) are some Cool expression that contain occurrences of “\(x\)” and “\(y\)”)

• Scope
 - of “\(y\)” is \(E_{x, y}\)
 - of outer “\(x\)” is \(E_{x, y}\)
 - of inner “\(x\)” is \(F_{x, y}\)

• This is captured precisely in the typing rule.
Let Example.

AST
Type env.
Types

\[\begin{aligned}
O |- \text{let } x : \text{int} \text{ in } & : \text{int} \\
& \quad (O(\text{len}) = \text{Str} \rightarrow \text{Int}) \\
O[\text{int}/x] |- & + : \text{int} \\
O[\text{int}/x] |- \text{let } y : \text{Str} \text{ in } & : \text{int} \\
O[\text{int}/x] |- \text{let } x : \text{Str} \text{ in } & : \text{int} \\
(O[\text{int}/x])[\text{Str}/y] |- \text{E}_{x,y} & : \text{int} \\
(O[\text{int}/x])[\text{Str}/y] |- x & : \text{int} \\
(O[\text{int}/x])[\text{Str}/x] |- \text{len}() & : \text{int} \\
(O[\text{int}/x])[\text{Str}/x] |- x & : \text{Str}
\end{aligned} \]
Notes

- The type environment gives types to the free identifiers in the current scope
- The type environment is passed down the AST from the root towards the leaves
- Types are computed up the AST from the leaves towards the root
Let with Initialization

COOL also has a `let` with initialization (I’ll let you guess what it’s supposed to mean):

\[
\frac{O \vdash e_0 : T_0}{O[T_0/x] \vdash e_1 : T_1} \quad \text{[Let-Init]}
\]

\[
O \vdash \text{let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1
\]

This rule is weak (i.e. too conservative). Why?
Let with Initialization

- Consider the example:

```cpp
class C inherits P { ... }
...
let x : P ← new C in ...
...
```

- The previous let rule does not allow this code
 - We say that the rule is too weak
Subtyping

• Define a relation $X \leq Y$ on classes to say that:
 - An object of type X could be used when one of type Y is acceptable, or equivalently
 - X conforms with Y
 - In Cool this means that X is a subclass of Y

• Define a relation \leq on classes
 $X \leq X$
 $X \leq Y$ if X inherits from Y
 $X \leq Z$ if $X \leq Y$ and $Y \leq Z$
Let with Initialization (Again)

\[
\begin{align*}
O \vdash e_0 : T \\
T \leq T_0 \\
O[T_0/x] \vdash e_1 : T_1
\end{align*}
\]

\[\frac{}{O \vdash \text{let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1}[\text{Let-Init}]\]

- Both rules for let are sound
- But more programs type check with the latter
Let with Subtyping. Notes.

- There is a tension between
 - Flexible rules that do not constrain programming
 - Restrictive rules that ensure safety of execution
Expressiveness of Static Type Systems

• A static type system enables a compiler to detect many common programming errors

• The cost is that some correct programs are disallowed
 - Some argue for dynamic type checking instead
 - Others argue for more expressive static type checking

• But more expressive type systems are also more complex
Dynamic And Static Types

• The *dynamic type* of an object is the class C that is used in the “new C” expression that creates the object
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type

• The *static type* of an expression is a notion that captures all possible dynamic types the expression could take
 - A compile-time notion
Dynamic and Static Types. (Cont.)

• In early type systems the set of static types correspond directly with the dynamic types.

• Soundness theorem: for all expressions E

 $\text{dynamic_type}(E) = \text{static_type}(E)$

 (in all executions, E evaluates to values of the type inferred by the compiler)

• This gets more complicated in advanced type systems.
Dynamic and Static Types

A variable of static type A can hold values of static type B, if $B \leq A$

```
class A(Object): ...
class B(A): ...
def Main():
    x: A
    x = A()
    ...
    x = B()
    ...
```

Here, x's value has dynamic type A

Here, x's value has dynamic type B

• A variable of static type A can hold values of static type B, if $B \leq A$
Dynamic and Static Types

Soundness theorem:
\[\forall E. \ dynamic_type(E) \leq static_type(E) \]

Why is this Ok?
- For \(E \), compiler uses \(static_type(E) \) (call it \(C \))
- All operations that can be used on an object of type \(C \) can also be used on an object of type \(C' \leq C \)
 - Such as fetching the value of an attribute
 - Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with same type!
Let's Examples.

• Consider the following Cool class definitions

```cool
Class A { a() : Int { 0 }; }
Class B inherits A { b() : Int { 1 }; }
```

• An instance of B has methods “a” and “b”
• An instance of A has method “a”
 - A type error occurs if we try to invoke method “b” on an instance of A
Example of Wrong Let Rule (1)

• Now consider a hypothetical let rule:

\[
\begin{align*}
O & \vdash e_0 : T \\
T & \leq T_0 \\
O & \vdash e_1 : T_1 \\
\hline
O & \vdash \text{let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1
\end{align*}
\]

• How is it different from the correct rule?

• The following good program does not typecheck

\[
\text{let } x : \text{Int} \leftarrow 0 \text{ in } x + 1
\]

• And some bad programs do typecheck

\[
\text{foo}(x : B) : \text{Int} \{ \text{let } x : A \leftarrow \text{new } A \text{ in } A.b() \}
\]
Example of Wrong Let Rule (2)

• Now consider another hypothetical let rule:

\[
\begin{align*}
O \vdash e_0 : T & \quad T_0 \leq T & \quad O[T_0/x] \vdash e_1 : T_1 \\
\hline
O \vdash \text{let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1
\end{align*}
\]

• How is it different from the correct rule?

• The following bad program is well typed

\[
\text{let } x : B \leftarrow \text{new } A \text{ in } x.b()
\]

• Why is this program bad?
Example of Wrong Let Rule (3)

• Now consider another hypothetical let rule:

\[\frac{O \vdash e_0 : T \quad T \leq T_0 \quad O[T/x] \vdash e_1 : T_1}{O \vdash \text{let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1} \]

• How is it different from the correct rule?

• The following good program is not well typed

\[
\text{let } x : A \leftarrow \text{new } B \text{ in \{... } x \leftarrow \text{new } A; \ x.a(); \} \]

• Why is this program not well typed?
Comments

• The typing rules use very concise notation
• They are very carefully constructed
• Virtually any change in a rule either:
 - Makes the type system unsound
 (bad programs are accepted as well typed)
 - Or, makes the type system less usable
 (good programs are rejected)

• But some good programs will be rejected anyway
 - The notion of a good program is undecidable
Assignment

More uses of subtyping: To the left, rule for languages with assignment expressions; to the right, assignment statements

\[
\begin{align*}
O(id) &= T_0 \\
O |- e_1 : T_1 \\
T_1 &\leq T_0 \\
\hline
O |- id \leftarrow e_1 : T_1
\end{align*}
\]

\[
\begin{align*}
O(id) &= T_0 \\
O |- e_1 : T_1 \\
T_1 &\leq T_0 \\
O |- id \leftarrow e_1 : \text{void}
\end{align*}
\]
Assignment in Pyth

- Pyth rule is looser than most.
- Doesn’t by itself guarantee runtime type correctness, so check will be needed in some cases.

\[
\begin{align*}
 O(id) &= T_0 \\
 O \vdash e_1 : T_1 \\
 T_1 &\leq T_0 \lor T_0 \leq T_1 \\
 \hline \\
 O \vdash id \leftarrow e_1 : \text{Void}
\end{align*}
\]
Function call in Pyth

- Parameter passing resembles assignment
- Taking just the single-parameter case:

\[
\begin{align*}
O |- e_0 &: T_1 \rightarrow T_2 \\
O |- e_1 &: T_3 \\
T_1 \leq T_3 \lor T_3 \leq T_1 \\
\hline
O |- e_0 (e_1) &: T_2
\end{align*}
\]
Conditional Expression

- Consider:
 \[
 \text{if } e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi} \quad \text{or} \quad e_0 \ ? \ e_1 \ : \ e_2 \ \text{in C}
 \]
- The result can be either \(e_1 \) or \(e_2 \)
- The dynamic type is either \(e_1 \)'s or \(e_2 \)'s type
- The best we can do statically is the smallest supertype larger than the type of \(e_1 \) and \(e_2 \)
If-Then-Else example

- Consider the class hierarchy

 ![Class Hierarchy Diagram]

- ... and the expression

 \[
 \text{if } \ldots \text{ then new } A \text{ else new } B \text{ fi}
 \]

- Its type should allow for the dynamic type to be both \(A \) or \(B \)

 - Smallest supertype is \(P \)
Least Upper Bounds

- \(\text{lub}(X,Y) \), the *least upper bound* of \(X \) and \(Y \), is \(Z \) if
 - \(X \leq Z \land Y \leq Z \)
 - \(Z \) is an upper bound
 - \(X \leq Z' \land Y \leq Z' \Rightarrow Z \leq Z' \)
 - \(Z \) is least among upper bounds

- Typically, the least upper bound of two types is their least common ancestor in the inheritance tree
If-Then-Else Revisited

\[O |- e_0 : \text{Bool} \]
\[O |- e_1 : T_1 \]
\[O |- e_2 : T_2 \]

\[O |- \text{if } e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi} : \text{lub}(T_1, T_2) \]

[If-Then-Else]