
Prof. Fateman CS 164 Lecture 26 1

Macro Expansion/ Macro Languages

Lecture 26

Prof. Fateman CS 164 Lecture 26 2

Lecture Outline

• Languages can be extended by text
transformations

• C preprocessor is a weak example
• Lisp macro definitions are stronger
• Examples

Prof. Fateman CS 164 Lecture 26 3

C Preprocessor

• #include "filename"
• #define YES 1
• #define id1(id2, id3…) token-string
• #undef identifier
• #if constant-expression
• #ifdef identifier
• #ifndef identifier
• #else
• #endif
• #line constant id /* renumber the next line re errors

*/

Prof. Fateman CS 164 Lecture 26 4

C Preprocessor Example

• We could do this
#define then
#define begin {
#define end ;}
if (i>0) then begin a=1; b=2 end

Becomes
if (i>0) {a=1;b=2;}

Prof. Fateman CS 164 Lecture 26 5

C Preprocessor Strength

• It does certain useful things to make up for
deficiencies in the language. Conditional
compilation subject to compile-time flags
def/ifdef

• (Java doesn’t have a preprocessor though!)

Prof. Fateman CS 164 Lecture 26 6

C Preprocessor Weaknesses

• It is a DIFFERENT language from C.
• For example

#define foo(a,b) 2*a+b
#define foo (a,b) 2*a+b
mean entirely different things

Scope? We don’t need no stinking scope. Or do we?

Prof. Fateman CS 164 Lecture 26 7

Other Macro / string processors

• M6, came with original UNIX
• TeX (typesetting program from D. Knuth)
• Emacs Elisp
• (perhaps stretching the form)

– VB macros for Microsoft Word, etc. -- not just
string processing

– Perl, Tcl are “scripting” languages with possible
substitution usages

Prof. Fateman CS 164 Lecture 26 8

Lisp Macro Definitions: the idea

• It is part of the same language:
• Change the interpreter, before calling a

function (foo a b c); ask: is foo defined as a
macro, if so, replace it by its expansion. Then
continue.

• For the compiler, before compiling a function
call (foo a b) ask: is foo a macro…

Prof. Fateman CS 164 Lecture 26 9

What do we change to put if* then elseif
else in Common Lisp?

in lisp now: (if a b c).
This is clumsy. What if you want to change the code to

do (if a {b1 b2} {c1 c2 c3}). You have to rewrite as
(if a (progn b1 b2)(progn c1 c2 c3)).
Harder to edit: must insert (progn ..b2) not just b2.
Proposal. A NEW language syntax
(if* a then b1 b2 else c1 c2) or even
(if* a then b1 b2 elseif c1 c2 then d else e)
violates spirit of lisp BUT if you are willing to agree that

b1, b2, etc are never then elseif...etc we can write a
macro to transform to “normal” lisp.

Prof. Fateman CS 164 Lecture 26 10

A definition of if* (including checking)

(defvar if*-keyword-list '("then" "thenret" "else" "elseif"))

(defmacro if* (&rest args) ;;; not for human consumption during lecture...

(do ((xx (reverse args) (cdr xx))

(state :init)

(elseses nil)

(totalcol nil)

(lookat nil nil)

(col nil))

((null xx)

(cond ((eq state :compl)

`(cond ,@totalcol))

(t (error "if*: illegal form ~s" args))))

(cond ((and (symbolp (car xx))

(member (symbol-name (car xx))

if*-keyword-list

:test #'string-equal))

(setq lookat (symbol-name (car xx)))))

(cond ((eq state :init) more on next slide....

Prof. Fateman CS 164 Lecture 26 11

A definition (including checking)

..... continued from previous...

(cond (lookat (cond ((string-equal lookat "thenret")

(setq col nil

state :then))

(t (error

"if*: bad keyword ~a" lookat))))

(t (setq state :col

col nil)

(push (car xx) col))))

((eq state :col)

(cond (lookat

(cond ((string-equal lookat "else")

(cond (elseseen

(error

"if*: multiples elses")))

(setq elseseen t)

(setq state :init)

(push `(t ,@col) totalcol))

((string-equal lookat "then")

(setq state :then))

(t (error "if*: bad keyword ~s"

lookat))))

(t (push (car xx) col))))

... even more... see http://www.franz.com/~jkf/ifstar.txt

http://www.franz.com/~jkf/ifstar.txt

Prof. Fateman CS 164 Lecture 26 12

Lisp Macro Implementation: Interpreter

(defun interp (x &optional env)
"Interpret (evaluate) the expression x
in the environment env.

This version handles macros."
(cond
((symbolp x) (get-var x env))
((atom x) x)
((is-it-a-macro (first x))
(interp (macro-expand x) env))
((case (first x)

…

Prof. Fateman CS 164 Lecture 26 13

Rest of interpreter changes

(defun macro-expand (x)
"Macro-expand this Lisp expression."
(if (and (listp x) (is this-a-macro (first x)))

(macro-expand
(apply (is-this-a-macro (first x)) (rest x)))

x))

(defun is-this-a-macro(name) (get name ‘macro))

(defmacro def-macro (name parmlist &body body)
"Define a lisp macro."
`(setf (get ',name 'scheme-macro)

#'(lambda ,parmlist .,body)))

Prof. Fateman CS 164 Lecture 26 14

Lisp Macro Definitions permeate language

• Used routinely, even for parts of the base
language! let, let*, and, or, cond, case.

• THERE IS NO AND in LISP
(macroexpand-1 '(and a b c))
(cond ((not a) nil) ((not b) nil) (t c))

• Used for defining NEW constructs in the
language, with nearly complete freedom of
semantics.

• Maintains similar parenthesized appearance.

Prof. Fateman CS 164 Lecture 26 15

Lisp Macro Definition : downside

• It can become complex to define a macro that
is as general as possible and correct.

• If macros are repeatedly expanded (as they
are in the interpreter), they can slow down
operation.

• Expanding macros “once, in place” is possible
though.

Prof. Fateman CS 164 Lecture 26 16

Lisp Macro Definitions don’t change lexical
model

• If you wish to change the LEXICAL MODEL of
Lisp, e.g. allow x:=a+b, no spaces, to be 5
tokens, this cannot be done with the lisp
macroexpansion.

• There is however a lisp “reader macro” and
readtable facility that is character-oriented.

• By using a character macro we can switch
surface syntax, change lexer, parser, etc... so
we can embed MJ code in lisp

• (+ 23 % {int x; method f(){return x+1;}%) ☺

Prof. Fateman CS 164 Lecture 26 17

You have already done macro expansions by
hand for MJ. And Lisp

We don’t need AND and OR .. We can use IF. But then….
We don’t need IF .. We can use COND
Do we have to make special checks for these operations, or can
we make general facilities.

Of course we can..

(defmacro and(a b) (list ‘if a b)) ;; or using ` notation…
(defmacro and(a b) `(if ,a ,b))

(defmacro myor (a b) `(if ,a t ,b))
(defmacro if (pred th el) `(cond ((,pred th)(t ,el))))

Prof. Fateman CS 164 Lecture 26 18

The magic and the mystery

From time to time we have used common lisp program segments
usually without comment, like
(incf x)

;; this computes y=x+1, stores it in x and returns y.

Can we write a function to do this?

(defun myincf (x)(setf x (+ x 1))) ;; no good.
(setf z 4)
(myincf z) --> 5 but z is still 4. We don’t have access to z inside
myincf.

Prof. Fateman CS 164 Lecture 26 19

Expansion in place

The trick is to expand in place the form (incf z) and
replace it with (setf z (+ z 1))

(defmacro myincf(z)(list 'setq z (list '+ z 1))) ;; or more succinctly
(defmacro myincf(z)`(setf ,z (+ ,z 1)))

(macroexpand '(incf x)) (setq x (+ x 1))

;; in fact, this is what the common lisp system does too:

(macroexpand '(incf x))
(setq x (+ x 1))

Prof. Fateman CS 164 Lecture 26 20

What do we expand, exactly?

;; it is not always so simple.
(macroexpand '(myincf (aref z (incf a))))
(setq (aref z 3) (+ (aref z 3) 1)) ;; looks OK z[3]:=z[3]+1

(macroexpand '(myincf (aref z (incf a))))
(setq (aref z (incf a)) (+ (aref z (incf a)) 1)) ;; NOPE z[a+1]:=z[a+2]+1

;; Here's a "better" version
(macroexpand '(incf (aref z (incf a)))) ;; produces something like this
(let* ((temp1 z)

(temp2 (incf a))
(temp3 (+ (aref temp1 temp2) 1)))

(internal-set-array temp3 temp1 temp2)) ;; z[a+1]:=temp3

Prof. Fateman CS 164 Lecture 26 21

Problems with free variables rebound

;; It can't do EXACTLY that because look what happens here

(defparameter temp1 43)

(macroexpand '(incf (aref z (+ temp1 1))))

(let* ((temp1 z)
(temp2 (+ temp1 1)) ;; supposed to be 44 but is not
(temp3 (+ (aref temp1 temp2) 1)))

(internal-set-array temp3 temp1 temp2))

;; LAMBDA CALCULUS EXPLAINS WHY THIS IS AN ERROR
ABOVE.

Prof. Fateman CS 164 Lecture 26 22

Problems with free variables rebound:solved

;; It can't do EXACTLY that because look what happens here

(defparameter temp1 43)

(macroexpand '(incf (aref z (+ temp1 1))))

;;actually, to avoid this kind of problem
;; expansion generates new, unique, labels.

(let* ((#:g23729 z)
(#:g23730 (+ temp1 1))
(#:g23731 (+ (aref #:g23729 #:g23730) 1)))

(excl::.inv-s-aref #:g23731 #:g23729 #:g23730))

Prof. Fateman CS 164 Lecture 26 23

LOOPs

;; LOOPs don't have to be compiled because they
are macro-expanded away.

(macroexpand '(loop (f x) (incf x)(print x)))

(block nil
(tagbody
#:g23661 (progn (f x) (incf x) (print x))

(go #:g23661)))

Prof. Fateman CS 164 Lecture 26 24

LOOPs

;; a fancier loop macro
(macroexpand '(loop for i from 1 by 2 to lim collect i))

(let ((i 1)
(#:g23666 lim))

(declare (type real #:g23666) (type real i))
(excl::with-loop-list-collection-head (#:g23667 #:g23668)

(block nil
(tagbody
excl::next-loop (when (> i #:g23666) (go excl::end-loop))

(excl::loop-collect-rplacd (#:g23667 #:g23668) (list i))
(excl::loop-really-desetq i (+ i 2))
(go excl::next-loop)

excl::end-loop (return-from nil (excl::loop-collect-answer
#:g23667))))))

Prof. Fateman CS 164 Lecture 26 25

SETF

SETF is a fairly subtle kind of program.

(macroexpand '(setf (cadr x) 'hello))
(let* ((#:g23663 (cdr x))

(#:g23662 'hello))
(excl::.inv-car #:g23663 #:g23662))

(macroexpand '(setf (aref (cadar x) 43) 'hello))
(let* ((#:g23664 (cadar x))

(#:g23665 'hello))
(excl::.inv-s-aref #:g23665 #:g23664 43))

Prof. Fateman CS 164 Lecture 26 26

IF*, like IF but with key words

;; in case you dislike the lack of key-words in an if, use if*

(macroexpand '(if* a then b c else d e))
(if a (progn b c) (cond (t d e)))

(macroexpand '(if* a then b c elseif d then e else f))
(if a (progn b c) (cond (d e) (t f)))

(macroexpand '(dotimes (i 10 retval) (f i)))
(let ((i 0))

(declare (type (integer 0 10) i))
(block nil

(tagbody
#:Tag608 (cond ((>= i 10) (return-from nil (progn retval))))

(tagbody (f i))
(psetq i (1+ i))
(go #:Tag608))))

Prof. Fateman CS 164 Lecture 26 27

While, Unless

(macroexpand '(while x y))

(block nil
(tagbody
#:g23670 (progn (unless x (return)) y) ;;; what is unless??

(go #:g23670)))

(macroexpand '(unless x y))
(if (not x) (progn nil y) nil)

Prof. Fateman CS 164 Lecture 26 28

Push

(macroexpand '(push x y)) ;;; simple version
(setq y (cons x y))

(macroexpand '(push x (aref stackarray 1))) ;;full version
(let* ((#:g23678 x)

(#:g23676 stackarray)
(#:g23677 (cons #:g23678 (aref #:g23676 1))))

(excl::.inv-s-aref #:g23677 #:g23676 1))

Prof. Fateman CS 164 Lecture 26 29

Pop

... reminder here's how it works...
(setf x '(a b c d))
(a b c d)

(pop x)
a
x (b c d)
............
could we do (pop x) this way?

(let ((ans (car x)))
(setf x (cdr x))
ans)

;;or in lisp idiom
(prog1 (car x)(setf x (cdr x)))

Prof. Fateman CS 164 Lecture 26 30

Pop, continued

;; The real pop does this…
(macroexpand '(pop x))

(let* ((#:g23682 nil))
(setq #:g23682 x)
(prog1 (car #:g23682)

(setq #:g23682 (cdr #:g23682))
(setq x #:g23682)))

The moral: Each object must be evaluated at most once.

Prof. Fateman CS 164 Lecture 26 31

How far can macroexpansion be pushed?

What more can be done? 100,000 lines of series code
originally by Richard Waters..

(macroexpand '(collect-sum (choose-if #'plusp (scan '(1 -2 3 -4)))))

This means essentially the same as this..

(let ((sum 0)) ; reference
(dolist (i '(1 -2 3 -4) sum)

(when (plusp i) (setq sum (+ sum i)))))

but uses "series". Macroexpansion of the original translates series
into loops like this..

Prof. Fateman CS 164 Lecture 26 32

Series code as Loop

How does it work?
(series 'b 'c) --> #z(b c b c ...) ;; self evaluating

(scan (list 'a 'b 'c)) --> #z(a b c)

(scan-range :upto 3)
(scan-range :from 1 :by -1 :above -4)

scan returns a series containing the elements of its sequence in order

optional type, e.g. (scan 'string "BAR") --> #Z(#\B #\A #\R)

Prof. Fateman CS 164 Lecture 26 33

Series code as Loop

(macroexpand '(collect-sum (choose-if #'plusp (scan '(1 -2 3 -4)))))

(LET* (#:ELEMENTS-198793
(#:LISTPTR-198794 '(1 -2 3 -4))
(#:SUM-198769 0))

(DECLARE (TYPE LIST #:LISTPTR-198794) (TYPE NUMBER
#:SUM-198769))

(TAGBODY
#:LL-198859 (IF (ENDP #:LISTPTR-198794) (GO SERIES::END))

(SETQ #:ELEMENTS-198793 (CAR #:LISTPTR-198794))
(SETQ #:LISTPTR-198794 (CDR #:LISTPTR-198794))
(IF (NOT (PLUSP #:ELEMENTS-198793)) (GO #:LL-198859))
(SETQ #:SUM-198769 (+ #:SUM-198769 #:ELEMENTS-

198793))
(GO #:LL-198859) SERIES::END)

#:SUM-198769)

Prof. Fateman CS 164 Lecture 26 34

Series code as Loop

Series expressions are transformed into loops by pipelining them
-the computation is converted from a form where entire series are
computed one after the other to a form where the arguments to
series functions are incrementally referenced/ computed in parallel.
In the resulting loop, each individual element is computed just once,
used, and then discarded before the next element is computed.

For this pipelining to be possible, a number of restrictions have to be
satisfied, basically requiring that you can fix the amount of the
“input” pipeline needed to compute the first element and subsequent
elements of the “output” pipeline.

Prof. Fateman CS 164 Lecture 26 35

Language definition/ extension…

• Much more in CS 263/ 264
• Vast literature on language extension

techniques

	Macro Expansion/ Macro Languages
	Lecture Outline
	C Preprocessor
	C Preprocessor Example
	C Preprocessor Strength
	C Preprocessor Weaknesses
	Other Macro / string processors
	Lisp Macro Definitions: the idea
	What do we change to put if* then elseif else in Common Lisp?
	A definition of if* (including checking)
	A definition (including checking)
	Lisp Macro Implementation: Interpreter
	Rest of interpreter changes
	Lisp Macro Definitions permeate language
	Lisp Macro Definition : downside
	Lisp Macro Definitions don’t change lexical model
	You have already done macro expansions by hand for MJ. And Lisp
	The magic and the mystery
	Expansion in place
	What do we expand, exactly?
	Problems with free variables rebound
	Problems with free variables rebound:solved
	LOOPs
	LOOPs
	SETF
	IF*, like IF but with key words
	While, Unless
	Push
	Pop
	Pop, continued
	How far can macroexpansion be pushed?
	Series code as Loop
	Series code as Loop
	Series code as Loop
	Language definition/ extension…

