
Prof. Fateman CS164 Lecture 25 1

Languages as a Tool for Software
Engineering

Piercing the Mysteries of Object-Oriented
Programming

Lecture 25

Prof. Fateman CS164 Lecture 25 2

Lecture Outline

• What is the relationship of PL and productivity?
– Search for the silver bullet

– Fads: Systematic, nth Generation, Object Oriented, …

– Side issues: batch vs. time-sharing vs. graphic interaction

• OO
– Message passing vs Generic functions

– The CLOS model

– Implementation

Prof. Fateman CS164 Lecture 25 3

Programmer Productivity is Low

If a programmer produces on average only 5-10 lines of correct code per
day, and it is irrelevant whether the code is in assembler or C or …. Then
the programmer using assembler is less productive.

What can we do? What is the silver bullet?

Prof. Fateman CS164 Lecture 25 4

Various proposals for higher productivity

Structured Requirements etc
Formal methods
Team dynamics

Hardware and software support (above the language level)

Testing

Rapid turnaround

Prof. Fateman CS164 Lecture 25 5

Higher Level Languages and Productivity

Use more concise programming languages?
Verify correctness
Automatic test generation

Fire the below-average programmers?
Hire more programmers?
(Re-)educate the programmers in mathematics and logic?
Genetic engineering: clone the best programmers?
Smart pills? ☺
BETTER SUPPORT FOR THE SOFTWARE “LIFE CYCLE”

maintenance
portability

Change the PL “paradigm” to model the application so that the
translation from real-world to virtual program world is easier.

Prof. Fateman CS164 Lecture 25 6

Object Oriented Programming tries to model
the world

Is this really a language issue? Yes if you are using a language that
interferes; No if you can just add these concepts to the
language.

Lisp supports many forms of language, and at least 4 OO additions
have been proposed and implemented (Flavors, Loops,
NewFlavors, CLOS).

Lisp allows one to use the “meta object protocol” to define
variations on its object system.

Prof. Fateman CS164 Lecture 25 7

Review of Object Oriented Programming
Ideas

Base some or all of your language about data objects: running this
down to the “ground”….

An instance or object is a block of memory that can hold some data
in slots, and is associated with some class of similar objects.

There is a way of finding out the class (es) of any object.

Associated with the class is a collection of methods for
manipulating objects, referring to their “slots” and other
methods. Sometimes classes have data too.

Typically there is a class hierarchy, so that an object is a member
of a class, but also a member of its “super” class. Methods can
also be attached to the super-classes.

Objects – Classes – Hierarchy-Inheritance-Methods

Prof. Fateman CS164 Lecture 25 8

Two common models for thinking about it

The recent first wave was to think of “message passing” … for
example, to find the area of an object

tell obj area

If obj has a method for area, or a superclass has a method, then
we “set self:= obj” and then run the method.

Extra arguments are possible like

tell obj move 10

X := 4 + 5 ;; 4 has a + method, aux argument 5. X has a := method..
Etc [this is like Smalltalk)

Prof. Fateman CS164 Lecture 25 9

Limits of the message model

This gets pretty boring, since EVERYTHING is

tell RECEIVER MESSAGE EXTRA_ARGS

So why not leave out the “tell” and put the “active part” first; all
we need is () to put it in lisp syntax:

(MESSAGE RECEIVER EXTRA_ARGS)

And now you see that the OO message-passing idea says in effect
that we are calling a function … which is the meaning of
MESSAGE, but that its meaning is modified by its first
argument (only). (+ 4 5) is ‘find the + method of 4, apply to 5.’

An obvious generalization: we could allow all the arguments to
participate in modifying the meaning of MESSAGE, which brings
us to the next model: generic functions.

Prof. Fateman CS164 Lecture 25 10

Generic functions are another cut through
the same programming text

GROUPED BY METHOD
(defmethod area((z rectangle)) ;; length X width..
(defmethod area ((z circle)) ;; pi X r^2
(defmethod area ((z triangle)) …..

GROUPED BY CLASS

class rectangle
method area ….

class circle
method area …

Prof. Fateman CS164 Lecture 25 11

Generic functions consist of “all the methods
with the same name”

discriminated by argument types
(defmethod area ((z rectangle)) ;; length X width..
(defmethod area ((z circle)) ;; pi X r^2
(defmethod area ((z triangle)) …..

Textually, you could write these defmethods far apart in the
program, if you chose to do so.

Prof. Fateman CS164 Lecture 25 12

CL Generic functions can be generic with
respect to each argument’s type*

(defmethod add((z rational)(w rational)) …

(defmethod add((z doublefloat)(w rational)) …

(defmethod add((z rational)(w doublefloat)) …

(defmethod add((z interval)(w rational)) …

Etc.
We could program combinations of rational + interval + complex +

float etc.

In general we still need to define the types, their slots, their
inheritance

*kinds of objects. The Object system mirrors the built-in types in
Lisp.

Prof. Fateman CS164 Lecture 25 13

More general types can also be used for
defmethod…

…This is how inheritance can be used effectively

(defmethod add((z number)(w number)) …

CLOS will use the MOST SPECIFIC method. Thus if number is a
superclass of rational, doublefloat, complex, interval etc. this
last method will be used as a backup (only) when a more specific
pair of arguments cannot be found.

Prof. Fateman CS164 Lecture 25 14

A clumsy example for CLOS

(defclass plane-figure() ()) ;no superclass, no slots

(defclass rectangle(plane-figure)(height width))

(setf r1 (make-instance 'rectangle))
(setf (slot-value r1 'height) 10)
(setf (slot-value r1 'width) 15)
(defmethod area ((r rectangle))(* (slot-value r 'width) (slot-value
r 'height)))

(area r1)
150
(area ‘foo)

error: no methods applicable

Prof. Fateman CS164 Lecture 25 15

A neater way, declaring slots

(defclass plane-figure() ())

(defclass rect (plane-figure)
((height :accessor hi)

(width :accessor wi)))

(setf r1 (make-instance 'rect))
(setf (hi r1) 10)
(setf (wi r1) 15)
(defmethod area ((r rectangle))(* (wi r) (hi r)))

(area r1)
150

Prof. Fateman CS164 Lecture 25 16

Even neater way, declaring initargs

(defclass plane-figure() ())

(defclass rect (plane-figure)
((height :accessor hi :initarg :hi)

(width :accessor wi :initarg :wi)))

(setf r1 (make-instance 'rect :hi 10 :wi 15))

(defmethod area ((r rect))(* (wi r) (hi r)))

(area r1)
150

Prof. Fateman CS164 Lecture 25 17

Superclasses

Complex precedence rules for inheritance from multiple
superclasses (single inheritance is often dictated by
some language optimized for “efficiency”)

CLOS allows multiple inheritance, e.g. from geometric
shape as well as graphical representation

(defclass screen-circle (circle graphic) ….;
(setf sc (make-instance ‘screen-circle …))

(radius sc)
(color sc)

Prof. Fateman CS164 Lecture 25 18

Method combination

Complex instructions for use of methods / before, after,
in-between. These are all plausible for various
applications.

There may be zero or more applicable methods: all the
arguments in the call come within the specializations
of all of its parameters.

Zero= error; otherwise the most specific gets used.

But auxiliary methods can be invoked e.g. “do this first”
or “do this afterward” or even “around” ..which can
call the primary method via “call-next-method”.

(Polite speaker example…)

Prof. Fateman CS164 Lecture 25 19

Implementation Criteria

• Flexibility/ Generality is part of the CL design
– Dynamic class definition: you can add methods or

even slots to an object AFTER instantiation
• Efficiency should come out of the

implementation: If you never need this
dynamic facility, set fields in concrete as
early as possible

• MOP “meta object protocol” provides tools for
rolling your own version of object system.
(Used by matlisp

Prof. Fateman CS164 Lecture 25 20

General Techniques

• One way: Method/Function call is 2 steps: given the
method, use a “case” on the argument type(s) to find
the right version.

• Another way (not for CLOS), given the type of the
receiver of the message, use a “case” on the method
name to find the right method.

• Either way you have to deal with inheritance, when
there is no immediate success in the search.

• It is possible to compile out flexibility at compile time
or repeatedly “just-in-time” (CLOS recompiles classes
on redefinition; other systems require recompiling
everything.)

Prof. Fateman CS164 Lecture 25 21

A simplified “How to do OO”

(ref. ANSI Common Lisp chapter 17)
YOU ARE ASSUMED TO HAVE READ THIS CHAPTER!!

It uses a simple “message passing” model. Starting
here. Classes are almost the same as objs.

Each object obj is a hash table. If you want to find a
method meth associated with that object, you
compute (gethash meth obj). Thus tell obj meth
becomes (funcall (gethash meth obj) obj)

We can define tell
(defun tell(ob m &rest args)

(apply (gethash m ob) ob args)

Prof. Fateman CS164 Lecture 25 22

That’s it

Prof. Fateman CS164 Lecture 25 23

A more elaborate “How to do OO”

Repeat from previous version:
Each object obj is a hash table. If you want to find a

property prop associated with that object, you
compute (gethash prop obj)

New part: inheritance
if there is no such property, then get obj’s parent, under

its :parent property, and look there, recursively if
necessary. That is, you look at (gethash prop
(gethash :parent obj)) call this recursive gethash
rget

Prof. Fateman CS164 Lecture 25 24

Tell is almost the same. Use rget

Tell obj message extra-args

is implemented by

(defun tell (obj message &rest args)
(apply (rget message obj) obj args))

It is assumed here that (rget message obj) will return a
function

Prof. Fateman CS164 Lecture 25 25

We could stop here but..

Let us try for multiple inheritance.
An object then does not have a single parent, but a list

of parents. We must compute an order in which to
visit the parents, and have rget use that.

When do you compute the list of parents?

Prof. Fateman CS164 Lecture 25 26

Parent precedence list for multiple inheritance

Object A inherits from B and C, B inherits from D, C inherits from
D. When do you look at D? Compute a precedence list.

When do you compute its parents?

(a) At compile time (efficient but inflexible).
(b) Every time you use rget and need to know where to look?

(flexible but very inefficient)
(c) Every time the class hierarchy changes you recompute the

:parents property for every object (inefficient if there are
many objects)

(d) When you use rget, you ask, has the class hierarchy changed so
as to affect this object? If so, redo :parents (almost as
efficient as (a)).

Prof. Fateman CS164 Lecture 25 27

Make this efficient

It pays to separate out classes and instances.

Associate methods with classes, so instances can be
smaller.

Prof. Fateman CS164 Lecture 25 28

Classes become more efficient

Instead of hashtables, use arrays. Compile away the
“names” of methods the same way we compiled away
the symbol table. For example, Method PRINT might
be location 13 in the method array associated with
the class of an object. Method X inherited from
parent A is also given a slot in the array.

(a) Do as much as possible at compile time (efficient but
inflexible).

(b) Instead of rget you are just doing an array ref.
(c) Make it impossible to change the class hierarchy

unless you recompile.

Prof. Fateman CS164 Lecture 25 29

Instances become more efficient

Instead of hashtables, use arrays. Compile away the
“names” of instance variables the same way we
compiled away the symbol table. For example, slot
“radius” might be location 2 in the instance array
associated with an object. Slot 0 might be a pointer
to the class of this object. Look there for methods.

Prof. Fateman CS164 Lecture 25 30

Object orientation has many variants

If this one is too simple, make it fancier. If this is too
fancy or slow, make it simpler.

In some sense object orientation and first-class
functions are different ways of viewing the same
style of computation; languages with a flexible
functional approach can implement objects easily.

(CS61a OO was written in Scheme..)

	Languages as a Tool for Software Engineering�Piercing the Mysteries of Object-Oriented Programming
	Lecture Outline
	Programmer Productivity is Low
	Various proposals for higher productivity
	Higher Level Languages and Productivity
	Object Oriented Programming tries to model the world
	Review of Object Oriented Programming Ideas
	Two common models for thinking about it
	Limits of the message model
	Generic functions are another cut through the same programming text
	Generic functions consist of “all the methods with the same name”
	CL Generic functions can be generic with respect to each argument’s type*
	More general types can also be used for defmethod…
	A clumsy example for CLOS
	A neater way, declaring slots
	Even neater way, declaring initargs
	Superclasses
	Method combination
	Implementation Criteria
	General Techniques
	A simplified “How to do OO”
	A more elaborate “How to do OO”
	Tell is almost the same. Use rget
	We could stop here but..
	Parent precedence list for multiple inheritance
	Make this efficient
	Classes become more efficient
	Instances become more efficient
	Object orientation has many variants

