
Prof. Fateman CS164 Lecture 24 1

Other Control Flow ideas: Throw, Catch,
Continuations and Call/CC

Lecture 24

Prof. Fateman CS164 Lecture 24 2

Lecture Outline

• Conventional control flow is not everything

• Throw/catch are dynamic returns in Lisp

• Call/CC goes even further (in Scheme)

• Continuation passing is really neat

Prof. Fateman CS164 Lecture 24 3

What control is missing in conventional languages?

Consider these variations:

Type declaration… var x: (if z then int else boolean)

x= (if (z) then foo else bar) (u) /*possible in functional MJ */

Define a method…
Void f() {goto(quit);} /*somewhere (where!?) is a label quit: */

Prof. Fateman CS164 Lecture 24 4

What is NOT dynamic in MJ?

Return can only be to the saved location prior to the call

Exceptions (e.g. Java’s try) don’t exist, nor is there a way to handle
them.

Asynchronous operations (e.g. spawned processes) missing

All these (and more) are in some languages.

Prof. Fateman CS164 Lecture 24 5

Non-local Exits

Rationale: something extremely rare and (generally) bad happens in
your program, and you want to pop up to some level, rejecting
partial computations.

You cannot wind your way out of a deeply nested chain of calls in any
reasonable fashion: you would have to check the return value of
every function.

You would like to “goto” some currently active program with some
information.

(Note that without some information you would not know how you
got to this spot, or that anything went wrong!)

Basis for error handling, but also other applications… maybe you
don’t want to exit? E.g. Replace all divide-by-zero results by
“INF”, but CONTINUE program sequence.

Prof. Fateman CS164 Lecture 24 6

Catch and Throw in Lisp / similar to Java try

(catch tag body)

(throw tag value)

(catch ‘tag (print 1) (throw ‘tag 2) (print 3))

Prints 1 and returns 2, without printing 3

Prof. Fateman CS164 Lecture 24 7

Catch and Throw / another example

(defun print-table(L)
(catch ‘not-a-number (mapcar #’print-sqrt L)))

(defun print-sqrt(x)(print (sqrt (must-be-number x))))

(defun must-be-number(x)
(if (numberp x) x (throw ‘not-a-number ‘Huh?)))

(print-table ‘(1 4 x))

1
2
Huh?

Note that the catch is NOT IN THE LEXICAL SCOPE of the throw
and bypasses the return from must-be-number, print-sqrt,
mapcar.

Prof. Fateman CS164 Lecture 24 8

Other errors..

Built-in errors do a kind of throw. CL has an elaborate error-handler for
catching these errors according to classifications, and ways of
substituting computations But here is the most primitive…

(ignore-errors (/ 0 0))
nil
#<division-by-zero @ #x20e9b6da>

Returns 2 values: nil, if an error, and the type of error

Specifically, ignore-errors executes forms in a dynamic environment
where a handler for conditions of type error has been established; if
invoked, it handles such conditions by returning two values, nil and the
condition that was signaled, from the ignore-errors form.

(more refined handling of errors is done by handler-case)

Prof. Fateman CS164 Lecture 24 9

Call with Current Continuation, call/cc is
part of Scheme: More powerful

Call/cc is a normal procedure that takes a single argument, say
comp. The function comp is itself a procedure of one argument.

(call/cc comp) ;; calls comp and returns what comp returns

The trick is, what is the argument to comp? It is a procedure. Call
it cc, which is the current continuation point. If cc is applied to
some value Z, that value Z is returned as the value of the call to
call/cc

Prof. Fateman CS164 Lecture 24 10

Examples of call/cc in Scheme

Call/cc is a normal procedure that takes a single argument, say
comp. The function comp is itself a procedure of one argument.

(+ 1 (call/cc (lambda(cc)(+ 20 300))));; doesn’t use the cc
321

(+ 1 (call/cc (lambda(cc)(+ 20 (cc 300)))));; uses cc
301

;; effectively this throws 300 out of the call/cc. Equivalent
;; to
((lambda(val)(+ 1 val))
(catch ‘cc ((lambda(v)(+ 20 v))(throw ‘cc 300))))

Or ((lambda(val) (+ 1 val)) 300)

Prof. Fateman CS164 Lecture 24 11

Print-table using call/cc in Scheme

(define (print-table L)
(call/cc

(lambda(escape)
(set! not-a-number escape) ;;set some global variable
(map print-sqrt L))))

(define (print-sqrt x)(write (sqrt (must-be-number x))))

(define (must-be-number x)
(if (numberp x) x (not-a-number ‘Huh?))

Prof. Fateman CS164 Lecture 24 12

An amazing additional feature of call/cc in
Scheme

(+ 1 (call/cc (lambda(cc)
(set! old-cc cc)
(+ 20 (cc 300)))));; doesn’t use the cc, but saves it

301

(old-cc 500);; uses cc
501

;; effectively old-cc returns FOR THE SECOND TIME to the point
;; in the computation where 1 is added, this time returning 501.

;; Can’t do this in common lisp. Throw/catch do not have “indefinite
extent”…

(+ 1 (catch ‘tag (+ 20 (throw ‘tag 300)))) 301

(throw ‘tag 500) error

Prof. Fateman CS164 Lecture 24 13

An application: “automatic backtracking” or
“nondeterministic programming”

You may have seen this in CS61a.

Let amb be the “ambiguous” operator that returns one of its two
arguments, chosen at random. Amb must be a special form or
macro since it must not evaluate both arguments… (amb x y) =

(if (random-choice) (lambda() x)(lambda() y))

(define (integer) (amb 1 (+1 (integer)))) ;; returns a random integer

(define (prime) ;;return some prime number
(let ((n (integer)))

(if (prime? n) (fail))))

Prof. Fateman CS164 Lecture 24 14

An application: “automatic backtracking” or
“nondeterministic programming”

(define backtrack-points nil)

(define (fail)
(let ((last-choice (car backtrack-points)))

(set! backtrack-points (cdr backtrack-points))
(last-choice)))

(define (random-choice f g)
(if (= 1 (random 2)) ;; (random 2) returns 0 or 1 randomly

(choose-first f g)
(choose-first g f)))

(define (choose-first f g)
(call/cc
(lambda(k)

(set! backtrack-points
(cons (lambda() (k (g))) backtrack-points))

(f))))

Prof. Fateman CS164 Lecture 24 15

To implement Call/CC we first need to talk
about continuations

We can write continuation-based programs from first
principles, at least in languages like Lisp. (First class
functions)

Basic idea: You never have to return a value. You call another
function with your answer. This may seem odd but it is both
coherent as a theoretical notion, and also useful in compilation!

Prof. Fateman CS164 Lecture 24 16

Huh? I’m confused.

Basic idea: You Never Return. You call another function with your
answer. We contrast conventional and continuation passing

Consider

(print (+ (* 3 4) 5)) ;; conventional version. Trace + and *

0: (* 3 4) ;; call to *
0: returned 12
0: (+ 12 5) ;;call to +
0: returned 17

17 ;; result of printing. We used the return value (12) along the
way

Prof. Fateman CS164 Lecture 24 17

Continuation version of +, *

Basic idea: You Never Return. You call another function with your
answer. Here’s a continuation version of + and *

(defun cc+ (a b cc)(funcall cc (+ a b)));; compute a+b, call cc on result
(defun cc* (a b cc)(funcall cc (* a b)))

;;Usage
(cc* 3 4 #’print)
12 ;; print 12

(cc* 3 4 #'(lambda(r)(cc+ r 5 #'print)))
17 ;; print 17

Prof. Fateman CS164 Lecture 24 18

Continuation version of +, *, traced

(cc* 3 4 #'(lambda(r)(cc+ r 5 #'print)))

0: (cc* 3 4 #<some function>)
1: (cc+ 12 5 #’print)

17 ;;; THE ANSWER IS PRINTED HERE
1: returned 17 ;; who cares? We knew that!!

0: returned 17 ;; who cares? No One!

Note that we have encapsulated “the place where you added 5 to
something.” Seems implausible in (+ (* 3 4) 5), but that’s what
we have done in #’(lambda(r)(cc+ …))

Prof. Fateman CS164 Lecture 24 19

A slightly more elaborate example

(print (+ (* 3 (+ 2 2)) 5)) ;; 3*(2+2)+5

(cc+ 2 2 #'(lambda(s)(cc* s 3 #'(lambda(r)(cc+ r 5 #'print)))))

0: (cc+ 2 2 #<function>) ;; run this in lisp and trace it
1: (cc* 3 4 #<function>)

2: (cc+ 12 5 #’print)

17
2: returned 17

1: returned 17
0: returned 17 ;; BORING AND UNNECESSARY TO RETURN

Prof. Fateman CS164 Lecture 24 20

Compiling from continuations is obvious

(print (+ (* 3 (+ 2 2)) 5)) ;; 3*(2+2)+5

(cc+ 2 2 #'(lambda(s)(cc* s 3 #'(lambda(r)(cc+ r 5 #'print)))))
(pushi 2)(pushi 2)(+) (pushi 3) (*) (pushi 5)(+) (print)

In fact, this can be a very refreshing way of organizing a compiler
or interpreter….

Prof. Fateman CS164 Lecture 24 21

How hard is it to implement an interpreter
supporting call/cc?

Two steps:
1. Rewrite the interpreter to use continuations
2. Add a few new functions to deal with call/cc specifically.

What is the flavor of the interpreter with continuations?
Details in Norvig’s Paradigms of AI Programming

Prof. Fateman CS164 Lecture 24 22

Interpreter with continuations

(defun interp(x env cc)
“Evaluate the expression x in the environment env,
and pass the result to the continuation cc.”

(cond ((symbolp x)(funcall cc (get-value x env)))
((atom x)(funcall cc x))

…
(case (first x)

(if (interp (second x) env
#’(lambda(pred)(interp (if pred (third x)(fourth x)) env

cc))))
(begin (interp-begin (cdr x) cc)

…

Prof. Fateman CS164 Lecture 24 23

Interp-begin with continuation

(defun interp-begin (body env cc)
“Evaluate the body in the environment env,
and pass the result of the last subexpression to the continuation

cc.”
(interp (first body) env

#’(lambda(val)
(if (null (rest body)) (funcall cc val)

(interp-begin (cdr body) env cc)))))

………..

The main call to the interpreter is then
(interp (read) env #’print)

Prof. Fateman CS164 Lecture 24 24

Tracing the interpreter supporting call/cc

(interp ‘(begin 3 4) nil #’print)
(interp-begin (3 4) nil #’print)
(interp 3 nil #’(lambda(val) (if (null ‘(4))(funcall #’print val)

(interp-begin ‘(4) env #’print))))

the continuation will be called on 3, but ‘(4) is not null…
(interp-begin (4) nil #’print)
(interp 4 nil #’(lambda(val) (if (null nil) (funcall #’print val) …..)

The continuation will be called on 4… and (null nil) ≡ true so
(funcall #’print 4) happens.

Prof. Fateman CS164 Lecture 24 25

How about adding call/cc?

Once we have a separate notion of “This is the continuation of the
calculation from this point on” .. It is, after all, just the
function cc, and we can give it an argument and then continue
the computation…. we can preserve it and re-execute it at our
leisure!

We can’t use a regular stack if we plan to use call/cc

Few people need the generality; though if you have this you can
implement virtually any control structure in any other language
and quite a few that exist nowhere else.

Even some Schemes do not support it.

Common Lisp does not preserve the control necessary.

	Other Control Flow ideas: Throw, Catch, Continuations and Call/CC
	Lecture Outline
	What control is missing in conventional languages?
	What is NOT dynamic in MJ?
	Non-local Exits
	Catch and Throw in Lisp / similar to Java try
	Catch and Throw / another example
	Other errors..
	Call with Current Continuation, call/cc is part of Scheme: More powerful
	Examples of call/cc in Scheme
	Print-table using call/cc in Scheme
	An amazing additional feature of call/cc in Scheme
	An application: “automatic backtracking” or “nondeterministic programming”
	An application: “automatic backtracking” or “nondeterministic programming”
	To implement Call/CC we first need to talk about continuations
	Huh? I’m confused.
	Continuation version of +, *
	Continuation version of +, *, traced
	A slightly more elaborate example
	Compiling from continuations is obvious
	How hard is it to implement an interpreter supporting call/cc?
	Interpreter with continuations
	Interp-begin with continuation
	Tracing the interpreter supporting call/cc
	How about adding call/cc?

