
Prof. Fateman CS 164 Lecture 23 1

Foundations of Theory of Programming
Languages:

Introduction to Lambda Calculus

Lecture 23

Prof. Fateman CS 164 Lecture 23 2

Lecture Outline

• Some History
• Why study lambda calculus?
• What IS lambda calculus?
• How extensions relate to explaining Lisp,

Tiger, Java etc. semantics

Prof. Fateman CS 164 Lecture 23 3

Lambda Calculus. History.

• A framework developed in 1930s by Alonzo
Church to study computations with functions

• Church wanted a minimal notation
– to expose only what is essential

• Two operations with functions are essential:
– function creation
– function application

• Um, what has this to do with (integral?)
calculus?

Prof. Fateman CS 164 Lecture 23 4

Function Creation

• Church introduced the notation
λx. E

to denote a function with formal argument
x and with body E

• Functions do not have names
– names are not essential for the computation

• Functions have a single argument
– once we understand how functions with one

argument work we can generalize to multiple args.

Prof. Fateman CS 164 Lecture 23 5

History of Notation

• Whitehead & Russell (Principia Mathematica) used the
notation ŷ P to denote the set of y’s such that P
holds.

• Church borrowed the notation but moved ˆ down to
create ∧y E

• Which later turned into λy. E and the calculus became
known as lambda calculus

• John McCarthy, inventor of Lisp, who later admitted
he didn’t really “understand” lambda calculus at the
time, appropriated the notation lambda[y](E), later
changed to (lambda(y) E) for an “anonymous” function.

Prof. Fateman CS 164 Lecture 23 6

More on Lisp and Lambda...

• We will find it useful to use lisp notation in
these slides because logicians muck up their
formal notation with implicit operators (just
putting items next to each other) and
expecting the reader to figure out
precedence.

Prof. Fateman CS 164 Lecture 23 7

Preview: Function Application

• The only thing that we can do with a function
is to apply it to an argument

• Church used the notation
E1 E2 …in lisp, (E1 E2)

to denote the application of function E1 to
actual argument E2

• All functions are applied to a single argument
• Even so, THIS IS ENOUGH TO COMPUTE

ANYTHING.

Prof. Fateman CS 164 Lecture 23 8

It sounds too dumb!!
Why Study Lambda Calculus?

• λ-calculus has had a tremendous influence on
the theory and analysis of programming
languages

• Comparable to Turing machines
• Provides a PL framework:

– Realistic languages are too large and complex to
study from scratch as a whole

– Typical approach is to modularize the study into
one feature at a time

• E.g., recursion, looping, exceptions, objects, etc.
– Then we assemble the features together

Prof. Fateman CS 164 Lecture 23 9

Is lambda calculus a programming language?

• λ-calculus as a concept is the standard testbed for
studying programming language features
– Because of its minimality
– Despite its syntactic simplicity the λ-calculus can easily encode:

• numbers, recursive data types, modules, imperative features,
exceptions, etc.

• Certain language features necessitate more substantial
extensions to λ-calculus:
– for distributed & parallel languages: π-calculus
– for object oriented languages: σ-calculus

• But as will be evident shortly, the bare lambda calculus
is not a PL in a practical sense.

Prof. Fateman CS 164 Lecture 23 10

A prediction come true

“Whatever the next 700 languages turn out to
be, they will surely be variants of lambda
calculus.”

(Peter Landin 1966)

Prof. Fateman CS 164 Lecture 23 11

Syntax of Lambda Calculus

• Syntax: Only three kinds of expressions
E x variables

| E1 E2 function application
| λx. E function creation

• The form λx. E is also called lambda
abstraction, or simply abstraction

• E are called λ-terms or λ-expressions

Prof. Fateman CS 164 Lecture 23 12

Syntax of Lambda Calculus in Lisp

• Only three kinds of LISP expressions
E → x variables

| (E1 E2) function application
| (lambda(x) E) function creation

• The form (lambda(x)E) is also called lambda
abstraction, or simply abstraction

• E are called s-expressions or terms

Prof. Fateman CS 164 Lecture 23 13

Examples of Lambda Expressions

• The identity function:
I =def λx. x … (lambda(x) x)

• A function that given an argument y discards it
and computes the identity function:

λy. (λx. x) ... (lambda(y)(lambda(x)x))
• A function that given a function f invokes it on

the identity function
 λf. f (λ x. x) …(lambda(f)(f(lambda(x)x)))
 {actually, that’s Scheme. In CL we

need…(lambda(f)(funcall f (lambda(x)x))) }

Prof. Fateman CS 164 Lecture 23 14

Notational Conventions which primarily serve
to confuse.

• Application associates to the left
x y z parses as (x y) z

• Abstraction extends to the right
as far as possible
λx. x λy. x y z parses as
λ x. (x (λy. ((x y) z)))

• And yields the the parse tree:

λx

app

x λy

z

app

app

x y

Prof. Fateman CS 164 Lecture 23 15

Notational Conventions in Lisp require no
precedence to parse

• Application ((x y) z)
• “Abstraction” is also obvious in Lisp syntax
 λx. x λy. x y z parses as
 (lambda(x) (x (lambda(y)((x y) z))

• Note that in this bottom example, x is a
function applied to y. x is also a function
applied to (lambda(y)((x y) z))

Prof. Fateman CS 164 Lecture 23 16

Scope of Variables

• As in all languages with variables it is
important to discuss the notion of scope
– Recall: the scope of an identifier is the portion of a

program where the identifier is accessible
• An abstraction λx. E binds variable x in E

– x is the newly introduced variable
– E is the scope of x
– we say x is bound in λx. E … (lambda(x)E)

Prof. Fateman CS 164 Lecture 23 17

Free and Bound Variables

• A variable is said to be free in E if it is not bound in E
• We can define the free variables of an expression E

recursively as follows:
Free(x) = {x}
Free(E1 E2) = Free(E1) ∪ Free(E2)
Free(λx. E) = Free(E) - { x }

• Example: Free(λx. x (λy. x y z)) = { z }
• You could think that free variables are global or bound

“outside” the expression we are looking at.

Prof. Fateman CS 164 Lecture 23 18

Free and Bound Variables Lisp notation

• A variable is said to be free in E if it is not
bound in E

• We can define the free variables of an
expression E recursively as follows:

Free(x) = {x}
Free((E1 E2)) = Free(E1) ∪ Free(E2)
Free((lambda(x) E)) = Free(E) - { x }

• Example: Free((lambda(x)(x (lambda(y)((x y) z))))) =
{ z }

• Lisp would call these global or special vars

Prof. Fateman CS 164 Lecture 23 19

Free and Bound Variables Lisp notation

Actually, common lisp is not so functionally pure; Scheme indeed looks
more like what we have just written, but in CL we have to use a few
extra marks to denote functions.

instead of (lambda(x)(x (lambda(y)((x y) z)…

(compile nil '(lambda(x)(funcall x #'(lambda(y)(funcall
(funcall x y) z))))

; While compiling (:internal (:anonymous-lambda 0) 0):

Warning: Free reference to undeclared variable z assumed
special.

Prof. Fateman CS 164 Lecture 23 20

Free and Bound Variables (Cont.)

• Just like in any language with static nested
scoping we have to worry about variable
shadowing
– An occurrence of a variable might refer to

different things in different context
• E.g. Lisp (let ((x E))(+ x (let ((x E2)) x)))

• In λ-calculus: λx. x (λx. x) x note we can’t do + here

Prof. Fateman CS 164 Lecture 23 21

Renaming Bound Variables

• What if two λ-terms can be obtained from each other
by a renaming of the bound variables ?

• Example: λx. x is identical to λy. y and to λz. z
• Intuition:

– by changing the name of a formal argument and of all its
occurrences in the function body, the behavior of the function
cannot change

– in λ-calculus such functions are considered identical
– In Lisp (lambda(x) x) and (lambda(y) y) are different

programs, but computationally equivalent. Mathematicians don’t
have such subtle notions of difference as programmers…

Prof. Fateman CS 164 Lecture 23 22

Renaming Bound Variables (Cont.)

• Convention: we will always rename bound
variables so that they are all unique
– e.g., write λx. x (λy.y) x instead of λx. x (λx.x) x

• This makes it easy to see the scope of
bindings

• And also prevents serious confusion !
• Bad: (lambda(x)((x (lambda(x)x) x)
• OK: (lambda(x)((x (lambda(y)y) x) well, about as good as it

is going to get...

Prof. Fateman CS 164 Lecture 23 23

What can we do with lambda calculus
expressions?

• Need operations to apply functions taking into
account bindings

• If possible, find canonical “simplest” forms
for expressions

Prof. Fateman CS 164 Lecture 23 24

Substitution

• The substitution of E’ for x in E (written [E’/x]E)
– Step 1. Rename bound variables in E and E’ so they are unique
– Step 2. Perform the textual substitution of E’ for x in E

• Example: [y (λx. x) / x] λy. (λx. x) y x
– After renaming: [y (λv. v)/x] λz. (λu. u) z x
– After substitution: λz. (λu. u) z (y (λv. v))

– [(y (lambda(x)x)) / x] (lambda(y)(((lambda(x)x)y)x)
– [(y (lambda(v)v)) / x] (lambda(z)(((lambda(u)u)z)x)
– (lambda(z)(((lambda(u)u)y) (y (lambda(v)v)))

Prof. Fateman CS 164 Lecture 23 25

Evaluation of λ-terms

• There is one key evaluation step in λ-calculus:
the function application

(λx. E) E’ evaluates to [E’/x]E
• This is called β-reduction
• We write E →β E’ to say that E’ is obtained

from E in one β-reduction step
• We write E →∗

β E’ if there are zero or more
steps

Prof. Fateman CS 164 Lecture 23 26

Examples of Evaluation

• The identity function:
(λx. x) E → [E / x] x = E

• Another example with the identity:
(λf. f (λx. x)) (λx. x) →
[λx. x / f] f (λx. x)) = [(λx. x) / f] f (λy. y)) =
(λx. x) (λy. y) →
[λy. y /x] x = λy. y

• A non-terminating evaluation:
(λx. xx)(λy. yy) →
[λy. yy / x]xx = (λy. yy)(λy. yy) → …

Prof. Fateman CS 164 Lecture 23 27

Examples of Evaluation in Lisp notation

• The identity function: ((lambda(x)x) E) =E
(λx. x) E → [E / x] x = E

• Another example with the identity:

((lambda(f)(f(lambda(x) x))(lambda(x)x)) = … (lambda(y) y)
• A non-terminating evaluation:

(λx. xx)(λy. yy) →

[λy. yy / x]xx = (λy. yy)(λy. yy) → …
((lambda(x)(x x)) (lambda(y) (y y))) beta reduces to
((lambda(y)(y y)) (lambda(y) (y y)))

Prof. Fateman CS 164 Lecture 23 28

Functions with Multiple Arguments

• Consider that we extend the calculus with the
add primitive operation

• The λ-term λx. λy. add x y can be used to add
two arguments E1 and E2:
(λx. λy. add x y) E1 E2 →β

([E1/x] λy. add x y) E2 =
(λy. add E1 y) E2 →β

[E2/y] add E1 y = add E1 E2

• The arguments are passed one at a time

Prof. Fateman CS 164 Lecture 23 29

Functions with Multiple Arguments

• Consider that we extend the calculus with the
add primitive operation

• The λ-term(lambda(x)(lambda(y)((add x) y)))
can be used to add two arguments E1 and E2:

• ((lambda(x)(lambda(y)((add x) y))) e1 e2)
beta reduces to
((add e1) e2) ;; oddly enough, this is claimed to

be The Answer…
• The arguments are passed one at a time to

make multiple arguments “Currying”..

Prof. Fateman CS 164 Lecture 23 30

Functions with Multiple Arguments, some of
which are MISSING

• What is the result of (λx. λy. add x y) E ?
– It is λy. add E y

(A function that given a value E’ for y will compute add E E’)
• The function λx. λy. E when applied to one argument E’

computes the function λy. [E’/x]E
• This is one example of higher-order computation

– We write a function whose result is another function
– In lisp notation, (add 3) would be a function that takes one

argument, say x and adds 3 to it. This is really old stuff
from CS61a.

Prof. Fateman CS 164 Lecture 23 31

Evaluation and Static Scope

• The definition of substitution guarantees that
evaluation respects static scoping:
(λ x. (λy. y x)) (y (λx. x)) →β λz. z (y (λv. v))

(y remains free, i.e., defined externally)
• If we forget to rename the bound y:

(λ x. (λy. y x)) (y (λx. x)) →∗
β λy. y (y (λv. v))

(y was free before but is bound now)

Prof. Fateman CS 164 Lecture 23 32

The Order of Evaluation

• In a λ-term there could be more than one
instance of (λx. E) E’

(λy. (λx. x) y) E
– could reduce the inner or the outer λ
– which one should we pick?

(λy. (λx. x) y) E

(λy. [y/x] x) E = (λy. y) E [E/y] (λx. x) y =(λx. x) E

E

inner outer

Prof. Fateman CS 164 Lecture 23 33

Order of Evaluation (Cont.)

• The Church-Rosser theorem says that any
order will compute the same result
– A result is a λ-term that cannot be reduced

further
• But we might want to fix the order of

evaluation when we model a certain language
• In (typical) programming languages we do not

reduce the bodies of functions (under a λ)
– functions are considered values

Prof. Fateman CS 164 Lecture 23 34

Call by Name

• Do not evaluate under a λ
• Do not evaluate the argument prior to call
• Example:

(λy. (λx. x) y) ((λu. u) (λv. v)) →βn

(λx. x) ((λu. u) (λv. v)) →βn

(λu. u) (λv. v) →βn

λv. v

Prof. Fateman CS 164 Lecture 23 35

Call by Value

• Do not evaluate under λ
• Evaluate an argument prior to call
• Example:

(λy. (λx. x) y) ((λu. u) (λv. v)) →βv

(λy. (λx. x) y) (λv. v) →βv

(λx. x) (λv. v) →βv

λv. v

Prof. Fateman CS 164 Lecture 23 36

Call by Name and Call by Value

• CBN
– difficult to implement
– order of side effects not predictable

• CBV:
– easy to implement efficiently
– might not terminate even if CBN might terminate
– Example: (λx. λ z.z) ((λy. yy) (λu. uu))

• Outside the functional programming language
community only CBV is used

Prof. Fateman CS 164 Lecture 23 37

Lambda Calculus and Programming Languages

• Pure lambda calculus has only functions
• What if we want to compute with booleans,

numbers, lists, etc.? Like 3+4=7?
• All these can be encoded in pure λ-calculus
• The trick: do not encode what a value is but

what we can do with it!
• For each data type we have to describe how it

can be used, as a function
– then we write that function in λ-calculus

Prof. Fateman CS 164 Lecture 23 38

Encoding Booleans in Lambda Calculus

• What can we do with a boolean?
– we can make a binary choice

• A boolean is a function that given two choices
selects one of them
– true =def λx. λy. x
– false =def λx. λy. y
– if E1 then E2 else E3 =def E1 E2 E3

• Example: if true then u else v is
(λx. λy. x) u v →β (λy. u) v →β u

Prof. Fateman CS 164 Lecture 23 39

Encoding Booleans in Lambda Calculus Lisp
notation

• What can we do with a boolean?
– we can make a binary choice

• A boolean is a function that given two choices
selects one of them
– true =def ((lambda(x)(lambda(y) x))
– false =def ((lambda(x)(lambda(y) y))
– if E1 then E2 else E3 =def ((E1 E2)E3)

• Example: if true then u else v is
((lambda(x)(lambda(y) x)) u) v) →β ((lambda(y) u) v)

→β u

Prof. Fateman CS 164 Lecture 23 40

Encoding Pairs in Lambda Calculus

• What can we do with a pair?
– we can select one of its elements

• A pair is a function that given a boolean
returns the left or the right element
cons x y =def λ b. b x y (lambda(b)((b x) y)
car p =def p true (p true)
cdr p =def p false (p false)

• Example:
(car (cons x y)) → ((cons x y) true) → (true x y) → x
You may recall having seen this in CS61a!

Prof. Fateman CS 164 Lecture 23 41

Encoding Natural Numbers in Lambda Calculus

• What can we do with a natural number?
– we can iterate a number of times

• A natural number is a function that given an
operation f and a starting value s, applies f a
number of times to s:
0 =def λf. λs. s
1 =def λf. λs. f s
2 =def λf. λs. f (f s)
and so on

Prof. Fateman CS 164 Lecture 23 42

Encoding Natural Numbers in Lisp

• What can we do with a natural number?
– we can iterate a number of times

• A natural number is a function that given an
operation f and a starting value s, applies f a
number of times to s:
0 =def (lambda(f) (lambda(s) s)
1 =def (lambda(f) (lambda(s) (f s))
2 =def (lambda(f) (lambda(s) (f(f s)))
and so on

Prof. Fateman CS 164 Lecture 23 43

Computing with Natural Numbers

• The successor function
succ n =def λf. λs. f (n f s)

• Addition
add n1 n2 =def n1 succ n2

• Multiplication
mult n1 n2 =def n1 (add n2) 0

• Testing equality with 0
iszero n =def n (λb. false) true

Prof. Fateman CS 164 Lecture 23 44

Computing with Natural Numbers in lisp
notation

• The successor function
succ n =def

(lambda(f)(lambda(s) (f ((n f) s)))
• Addition

add n1 n2 =def ((n1 succ) n2)
• Multiplication

mult n1 n2 =def ((n1 (add n2)) 0)

Prof. Fateman CS 164 Lecture 23 45

Computing with Natural Numbers. Example

mult 2 2 →
2 (add 2) 0 →
(add 2) ((add 2) 0) →
2 succ (add 2 0) →
2 succ (2 succ 0) →
succ (succ (succ (succ 0))) →
succ (succ (succ (λf. λs. f (0 f s)))) →
succ (succ (succ (λf. λs. f s))) →
succ (succ (λg. λy. g ((λf. λs. f s) g y)))
succ (succ (λg. λy. g (g y))) →* λg. λy. g (g (g (g y))) = 4

Prof. Fateman CS 164 Lecture 23 46

Computing with Natural Numbers. Example

• What is the result of the application add 0 ?
(λn1. λn2. n1 succ n2) 0 →β

λn2. 0 succ n2 =
λn2. (λf. λs. s) succ n2 →β

λn2. n2 =
λx. x

• By computing with functions we can express
some optimizations

Prof. Fateman CS 164 Lecture 23 47

Expressiveness of Lambda Calculus

• The λ-calculus can express
– data types (integers, booleans, lists, trees, etc.)
– branching (using booleans)
– recursion

• This is enough to encode Turing machines
• Encodings are fun
• But programming in pure λ-calculus is painful.
• A more fruitful approach for language theorists is to

extend the pure λ calculus
– actually add constants (0, 1, 2, …, true, false, if-then-else,

etc.)
– types

Prof. Fateman CS 164 Lecture 23 48

We’ll quit here for lack of time

• Much more in CS 263
• Vast literature

	Foundations of Theory of Programming Languages:�Introduction to Lambda Calculus
	Lecture Outline
	Lambda Calculus. History.
	Function Creation
	History of Notation
	More on Lisp and Lambda...
	Preview: Function Application
	It sounds too dumb!! �Why Study Lambda Calculus?
	Is lambda calculus a programming language?
	A prediction come true
	Syntax of Lambda Calculus
	Syntax of Lambda Calculus in Lisp
	Examples of Lambda Expressions
	Notational Conventions which primarily serve to confuse.
	Notational Conventions in Lisp require no precedence to parse
	Scope of Variables
	Free and Bound Variables
	Free and Bound Variables Lisp notation
	Free and Bound Variables Lisp notation
	Free and Bound Variables (Cont.)
	Renaming Bound Variables
	Renaming Bound Variables (Cont.)
	What can we do with lambda calculus expressions?
	Substitution
	Evaluation of l-terms
	Examples of Evaluation
	Examples of Evaluation in Lisp notation
	Functions with Multiple Arguments
	Functions with Multiple Arguments
	Functions with Multiple Arguments, some of which are MISSING
	Evaluation and Static Scope
	The Order of Evaluation
	Order of Evaluation (Cont.)
	Call by Name
	Call by Value
	Call by Name and Call by Value
	Lambda Calculus and Programming Languages
	Encoding Booleans in Lambda Calculus
	Encoding Booleans in Lambda Calculus Lisp notation
	Encoding Pairs in Lambda Calculus
	Encoding Natural Numbers in Lambda Calculus
	Encoding Natural Numbers in Lisp
	Computing with Natural Numbers
	Computing with Natural Numbers in lisp notation
	Computing with Natural Numbers. Example
	Computing with Natural Numbers. Example
	Expressiveness of Lambda Calculus
	We’ll quit here for lack of time

