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Foundations of Theory of Programming 
Languages:

Introduction to Lambda Calculus

Lecture 23
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Lecture Outline

• Some History
• Why study lambda calculus?
• What IS lambda calculus?
• How extensions relate to explaining Lisp, 

Tiger, Java etc. semantics
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Lambda Calculus. History.

• A framework developed in 1930s by Alonzo 
Church to study computations with functions

• Church wanted a minimal notation
– to expose only what is essential

• Two operations with functions are essential:
– function creation
– function application

• Um, what has this to do with (integral?) 
calculus?



Prof. Fateman  CS 164  Lecture 23 4

Function Creation

• Church introduced the notation
λx. E  

to denote a function  with formal argument 
x and with body E

• Functions do not have names
– names are not essential for the computation

• Functions have a single argument
– once we understand how functions with one 

argument work we can generalize to multiple args.
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History of Notation

• Whitehead & Russell (Principia Mathematica) used the 
notation   ŷ P to denote the set of y’s such that P 
holds.

• Church borrowed the notation but moved ˆ down to 
create ∧y E

• Which later turned into  λy. E and the calculus became 
known as lambda calculus

• John McCarthy, inventor of Lisp, who later admitted 
he didn’t really “understand” lambda calculus at the 
time, appropriated the notation  lambda[y](E), later 
changed to (lambda(y) E) for an “anonymous” function.
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More on Lisp and Lambda...

• We will find it useful to use lisp notation in 
these slides because logicians muck up their 
formal notation with implicit operators (just 
putting items next to each other) and 
expecting the reader to figure out 
precedence.
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Preview: Function Application

• The only thing that we can do with a function 
is to apply it to an argument

• Church used the notation
E1 E2 …in lisp,  (E1 E2 )

to denote the application of function E1 to 
actual argument E2

• All functions are applied to a single argument
• Even so, THIS IS ENOUGH TO COMPUTE 

ANYTHING.
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It sounds too dumb!! 
Why Study Lambda Calculus?

• λ-calculus has had a tremendous influence on 
the theory and analysis of programming 
languages

• Comparable to Turing machines
• Provides a PL framework:

– Realistic languages are too large and complex to 
study from scratch as a whole

– Typical approach is to modularize the study into 
one feature at a time

• E.g., recursion, looping, exceptions, objects, etc.
– Then we assemble the features together
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Is lambda calculus a programming language?

• λ-calculus as a concept is the standard testbed for 
studying programming language features
– Because of its minimality
– Despite its syntactic simplicity the λ-calculus can easily encode:

• numbers, recursive data types, modules, imperative features, 
exceptions, etc.

• Certain language features necessitate more substantial 
extensions to λ-calculus:
– for distributed & parallel languages: π-calculus
– for object oriented languages: σ-calculus

• But as will be evident shortly, the bare lambda calculus 
is not a PL in a practical sense.
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A prediction come true

“Whatever the next 700 languages turn out to 
be, they will surely be variants of lambda 
calculus.”

(Peter Landin 1966)
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Syntax of Lambda Calculus

• Syntax: Only three kinds of expressions
E x                        variables

|  E1 E2 function application
|   λx. E                 function creation

• The form λx. E is also called lambda 
abstraction, or simply abstraction

• E are called λ-terms or λ-expressions
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Syntax of Lambda Calculus in Lisp

• Only three kinds of LISP expressions
E → x variables

|  (E1 E2 ) function application
|   (lambda(x) E) function creation

• The form (lambda(x)E) is also called lambda 
abstraction, or simply abstraction

• E are called s-expressions or terms
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Examples of Lambda Expressions

• The identity function:
I =def λx. x     … (lambda(x) x)

• A function that given an argument y discards it 
and computes the identity function:

λy. (λx. x)  ... (lambda(y)(lambda(x)x))
• A function that given a function f invokes it on 

the identity function
 λf. f (λ x. x)  …(lambda(f)(f(lambda(x)x)))
 {actually, that’s Scheme. In CL we 

need…(lambda(f)(funcall f (lambda(x)x)))  }
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Notational Conventions which primarily serve 
to confuse.

• Application associates to the left
x y z parses as (x y) z

• Abstraction extends to the right 
as far as possible
λx. x λy. x y z parses as    
λ x. (x (λy. ((x y) z)))

• And yields the the parse tree:

λx

app

x λy

z

app

app

x y
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Notational Conventions in Lisp require no 
precedence to parse

• Application ((x y) z)  
• “Abstraction” is also obvious in Lisp syntax
 λx. x λy. x y z parses as
 (lambda(x) (x (lambda(y)((x y) z))    

• Note that in this bottom example, x is a 
function applied to y.  x is also a function 
applied to (lambda(y)((x y) z))
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Scope of Variables

• As in all languages with variables it is 
important to discuss the notion of scope
– Recall: the scope of an identifier is the portion of a 

program where the identifier is accessible
• An abstraction λx. E binds variable x in E

– x is the newly introduced variable
– E is the scope of x
– we say x is bound in λx. E  … (lambda(x)E)
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Free and Bound Variables

• A variable is said to be free in E if it is not bound in E
• We can define the free variables of an expression E 

recursively as follows:
Free(x) = {x} 
Free(E1 E2) = Free(E1) ∪ Free(E2)
Free(λx. E) = Free(E) - { x }

• Example: Free(λx. x (λy. x y z)) = { z }
• You could think that free variables are global or bound 

“outside” the expression we are looking at.



Prof. Fateman  CS 164  Lecture 23 18

Free and Bound Variables Lisp notation

• A variable is said to be free in E if it is not 
bound in E

• We can define the free variables of an 
expression E recursively as follows:

Free(x) = {x} 
Free( (E1 E2) ) = Free(E1) ∪ Free(E2)
Free( (lambda(x) E)) = Free(E) - { x }

• Example: Free( (lambda(x)(x (lambda(y)((x y) z)))) ) = 
{ z }

• Lisp would call these global or special vars
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Free and Bound Variables Lisp notation

Actually, common lisp is not so functionally pure;  Scheme indeed looks 
more like what we have just written, but in CL we have to use a few 
extra marks to denote functions.

instead of (lambda(x)(x (lambda(y)((x y) z)…

(compile nil '(lambda(x)(funcall x #'(lambda(y)(funcall
(funcall x y) z))))

; While compiling (:internal (:anonymous-lambda 0) 0):

Warning: Free reference to undeclared variable z assumed 
special.
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Free and Bound Variables (Cont.)

• Just like in any language with static nested 
scoping we have to worry about variable 
shadowing
– An occurrence of a variable might refer to 

different things in different context
• E.g. Lisp  (let ((x E))(+ x (let ((x E2)) x)))

• In λ-calculus: λx. x (λx. x) x  note we can’t do + here
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Renaming Bound Variables

• What if two λ-terms can be obtained from each other 
by a renaming of the bound variables ?

• Example: λx. x is identical to λy. y and to λz. z
• Intuition: 

– by changing the name of a formal argument and of all its 
occurrences in the function body, the behavior of the function 
cannot change

– in λ-calculus such functions are considered identical
– In Lisp  (lambda(x) x) and (lambda(y) y) are different 

programs, but computationally equivalent. Mathematicians don’t 
have such subtle notions of difference as programmers…



Prof. Fateman  CS 164  Lecture 23 22

Renaming Bound Variables (Cont.)

• Convention: we will always rename bound 
variables so that they are all unique
– e.g., write λx. x (λy.y) x instead of λx. x (λx.x) x

• This makes it easy to see the scope of 
bindings

• And also prevents serious confusion !
• Bad: (lambda(x)((x (lambda(x)x) x)
• OK:  (lambda(x)((x (lambda(y)y) x) well, about as good as it 

is going to get... 
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What can we do with lambda calculus 
expressions?

• Need operations to apply functions taking into 
account bindings

• If possible, find canonical “simplest” forms 
for expressions
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Substitution

• The substitution of E’ for x in E (written [E’/x]E )
– Step 1. Rename bound variables in E and E’ so they are unique
– Step 2. Perform the textual substitution of E’ for x in E

• Example: [y (λx. x) / x] λy. (λx. x) y x
– After renaming: [y (λv. v)/x] λz. (λu. u) z x
– After substitution: λz. (λu. u) z (y (λv. v))

– [(y (lambda(x)x)) / x] (lambda(y)(((lambda(x)x)y)x)
– [(y (lambda(v)v)) / x] (lambda(z)(((lambda(u)u)z)x)
– (lambda(z)(((lambda(u)u)y) (y (lambda(v)v)) )
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Evaluation of λ-terms

• There is one key evaluation step in λ-calculus: 
the function application

(λx. E) E’ evaluates to [E’/x]E
• This is called β-reduction
• We write E →β E’ to say that E’ is obtained 

from E in one β-reduction step
• We write E →∗

β E’ if there are zero or more 
steps
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Examples of Evaluation

• The identity function: 
(λx. x) E → [E / x] x = E

• Another example with the identity:
(λf. f (λx. x)) (λx. x) →
[λx. x / f] f (λx. x)) = [(λx. x) / f] f (λy. y)) = 
(λx. x) (λy. y) →
[λy. y /x] x = λy. y

• A non-terminating evaluation:
(λx. xx)(λy. yy) →
[λy. yy / x]xx = (λy. yy)(λy. yy) → …
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Examples of Evaluation in Lisp notation

• The identity function: ((lambda(x)x) E) =E
(λx. x) E → [E / x] x = E

• Another example with the identity:

((lambda(f)(f(lambda(x) x))(lambda(x)x))  = … (lambda(y) y)
• A non-terminating evaluation:

(λx. xx)(λy. yy) →

[λy. yy / x]xx = (λy. yy)(λy. yy) → …
( (lambda(x)(x x))  (lambda(y) (y y))) beta reduces to
( (lambda(y)(y y))  (lambda(y) (y y)))
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Functions with Multiple Arguments

• Consider that we extend the calculus with the 
add primitive operation 

• The λ-term λx. λy. add x y can be used to add 
two arguments E1 and E2:
(λx. λy. add x y) E1 E2 →β

([E1/x] λy. add x y) E2 =
(λy. add E1 y) E2 →β

[E2/y] add E1 y = add E1 E2

• The arguments are passed one at a time
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Functions with Multiple Arguments

• Consider that we extend the calculus with the 
add primitive operation 

• The λ-term(lambda(x)(lambda(y)((add x) y)))
can be used to add two arguments E1 and E2:

• ( (lambda(x)(lambda(y)((add x) y))) e1 e2)
beta reduces to 
((add e1) e2) ;; oddly enough, this is claimed to 

be The Answer…
• The arguments are passed one at a time to 

make multiple arguments “Currying”..
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Functions with Multiple Arguments, some of 
which are MISSING

• What is the result of (λx. λy. add x y) E ?
– It is λy. add E y

(A function that given a value E’ for y will compute add E E’)
• The function λx. λy. E when applied to one argument E’

computes the function λy. [E’/x]E
• This is one example of higher-order computation

– We write a function whose result is another function
– In lisp notation, (add 3) would be a function that takes one 

argument, say x   and adds 3 to it. This is really old stuff 
from CS61a.



Prof. Fateman  CS 164  Lecture 23 31

Evaluation and Static Scope

• The definition of substitution guarantees that 
evaluation respects static scoping:
(λ x. (λy. y x)) (y (λx. x)) →β λz. z (y (λv. v))

(y remains free, i.e., defined externally)
• If we forget to rename the bound y:

(λ x. (λy. y x)) (y (λx. x)) →∗
β λy. y (y (λv. v))

(y was free before but is bound now)



Prof. Fateman  CS 164  Lecture 23 32

The Order of Evaluation

• In a λ-term there could be more than one 
instance of (λx. E) E’

(λy. (λx. x) y) E
– could reduce the inner or the outer λ
– which one should we pick?

(λy. (λx. x) y) E

(λy. [y/x] x) E = (λy. y) E [E/y] (λx. x) y =(λx. x) E

E

inner outer
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Order of Evaluation (Cont.)

• The Church-Rosser theorem says that any 
order will compute the same result
– A result is a λ-term that cannot be reduced 

further
• But we might want to fix the order of 

evaluation when we model a certain language
• In (typical) programming languages we do not 

reduce the bodies of functions (under a λ)
– functions are considered values
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Call by Name

• Do not evaluate under a λ
• Do not evaluate the argument prior to call
• Example:

(λy. (λx. x) y) ((λu. u) (λv. v)) →βn

(λx. x) ((λu. u) (λv. v)) →βn

(λu. u) (λv. v) →βn

λv. v
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Call by Value

• Do not evaluate under λ
• Evaluate an argument prior to call
• Example:

(λy. (λx. x) y) ((λu. u) (λv. v)) →βv

(λy. (λx. x) y) (λv. v) →βv

(λx. x) (λv. v) →βv

λv. v
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Call by Name and Call by Value

• CBN
– difficult to implement
– order of side effects not predictable

• CBV:
– easy to implement efficiently
– might not terminate even if CBN might terminate
– Example: (λx. λ z.z) ((λy. yy) (λu. uu))

• Outside the functional programming language 
community only CBV is used
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Lambda Calculus and Programming Languages

• Pure lambda calculus has only functions
• What if we want to compute with booleans, 

numbers, lists, etc.? Like 3+4=7?
• All these can be encoded in pure λ-calculus
• The trick: do not encode what a value is but 

what we can do with it!
• For each data type we have to describe how it 

can be used, as a function
– then we write that function in λ-calculus
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Encoding Booleans in Lambda Calculus

• What can we do with a boolean? 
– we can make a binary choice

• A boolean is a function that given two choices 
selects one of them
– true =def λx. λy. x
– false =def λx. λy. y
– if E1 then E2 else E3 =def E1 E2 E3

• Example: if true then u else v is 
(λx. λy. x) u v →β (λy. u) v →β u
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Encoding Booleans in Lambda Calculus Lisp 
notation

• What can we do with a boolean? 
– we can make a binary choice

• A boolean is a function that given two choices 
selects one of them
– true =def ((lambda(x)(lambda(y) x))
– false =def ((lambda(x)(lambda(y) y))
– if E1 then E2 else E3 =def ((E1 E2 )E3 )

• Example: if true then u else v is 
((lambda(x)(lambda(y) x)) u) v) →β ((lambda(y) u) v)

→β u
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Encoding Pairs in Lambda Calculus

• What can we do with a pair?
– we can select one of its elements

• A pair is a function that given a boolean
returns the left or the right element
cons x y  =def λ b. b x y      (lambda(b)((b x) y)
car p          =def p true        (p true)
cdr p          =def p false       (p false)

• Example:
(car (cons x y)) → ((cons x y) true) → (true x y) → x
You may recall having seen this in CS61a!
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Encoding Natural Numbers in Lambda Calculus

• What can we do with a natural number?
– we can iterate a number of times

• A natural number is a function that given an 
operation f and a starting value s, applies f a 
number of times to s:
0 =def λf. λs. s
1 =def λf. λs. f s
2 =def λf. λs. f (f s)
and so on
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Encoding Natural Numbers in Lisp

• What can we do with a natural number?
– we can iterate a number of times

• A natural number is a function that given an 
operation f and a starting value s, applies f a 
number of times to s:
0 =def (lambda(f) (lambda(s) s)
1 =def (lambda(f) (lambda(s) (f s))
2 =def (lambda(f) (lambda(s) (f(f s)))
and so on
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Computing with Natural Numbers

• The successor function
succ n =def λf. λs. f (n f s)

• Addition
add n1 n2 =def n1 succ n2

• Multiplication
mult n1 n2 =def n1 (add n2) 0

• Testing equality with 0
iszero n =def n (λb. false) true
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Computing with Natural Numbers in lisp 
notation

• The successor function
succ n =def

(lambda(f)(lambda(s) (f ((n f) s)))
• Addition

add n1 n2 =def ((n1 succ) n2 )
• Multiplication

mult n1 n2 =def ((n1 (add n2)) 0)
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Computing with Natural Numbers. Example

mult 2 2 →
2 (add 2) 0 →
(add 2) ((add 2) 0) →
2 succ (add 2 0) →
2 succ (2 succ 0) →
succ (succ (succ (succ 0))) →
succ (succ (succ (λf. λs. f (0 f s)))) →
succ (succ (succ (λf. λs. f s))) →
succ (succ (λg. λy. g ((λf. λs. f s) g y)))
succ (succ (λg. λy. g (g y))) →* λg. λy. g (g (g (g y))) = 4
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Computing with Natural Numbers. Example

• What is the result of the application add 0 ?
(λn1. λn2. n1 succ n2) 0 →β

λn2. 0 succ n2 =
λn2. (λf. λs. s) succ n2 →β

λn2. n2 =
λx. x

• By computing with functions we can express 
some optimizations
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Expressiveness of Lambda Calculus

• The λ-calculus can express
– data types (integers, booleans, lists, trees, etc.)
– branching (using booleans)
– recursion

• This is enough to encode Turing machines
• Encodings are fun
• But programming in pure λ-calculus is painful. 
• A more fruitful approach for language theorists is to 

extend the pure λ calculus 
– actually add constants (0, 1, 2, …, true, false, if-then-else, 

etc.)
– types
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We’ll quit here for lack of time

• Much more in CS 263
• Vast literature
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