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Local Optimizations

Lecture 21
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Lecture Outline

• Local optimization

• Next time: global optimizations
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Code Generation Summary

• We have discussed
– Runtime organization
– Simple stack machine code generation

• Our compiler goes directly from AST to assembly 
language with a brief stop or two
– If we preserved environment data from typecheck, use that;
– cleanup other minor loose ends perhaps.
– Simple-compile.lisp does not perform optimizations

• Most real compilers use some optimization somewhere  
(history of Fortran I..)
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When to perform optimizations

– On AST
• Pro: Machine independent
• Con: Too high level

– On assembly language
• Pro: Exposes more optimization opportunities
• Con: Machine dependent
• Con: Must reimplement optimizations when retargetting

– On an intermediate language between AST and 
assembler

• Pro: Machine independent
• Pro: Exposes many optimization opportunities 
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Intermediate Languages for Optimization

• Each compiler uses its own intermediate language
– IL design is still an active area of research

• Intermediate language = high-level assembly language
– Uses register names, but has an unlimited number
– Uses control structures like assembly language
– Uses opcodes but some are higher level

• E.g., push may translate to several assembly instructions
• Perhaps some opcodes correspond directly to assembly opcodes

• Usually not stack oriented.
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Texts often consider optimizing based on 
Three-Address Intermediate Code

• Computations are reduced to simple forms like
x := y op z   [3 addresses]

or maybe x := op y
– y and z can be only registers or constants (not expressions!)
– Also need control flow test/jump/call/ 

• New variables are generated, perhaps to be used only 
once (SSA= static single assignment)

• The expression  x + y * z is translated as
t1 := y * z
t2 := x + t1

– Each subexpression then has a “home” for its value



Prof. Fateman  CS164  Lecture 21 7

How hard to generate this kind of Intermediate 
Code? 

• Similar technique to our assembly code 
generation

• Major differences
– Use any number of IL registers to hold 

intermediate results
– Not stack oriented

• Same compiler organization..
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Generating Intermediate Code (Cont.)

• Igen(e, t) function generates code to compute 
the value of e in register t

• Example:
igen(e1 + e2, t) = 

igen(e1, t1)             ;(t1 is a fresh register)
igen(e2, t2)            ;(t2 is a fresh register)
t := t1 + t2                     ;(instead of  “+”)

• Unlimited number of registers
⇒ simple code generation
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We can define an Intermediate Language 
formally, too...

P → S ; P | ε
S → id := id op id

| id := op id
| id := id
| push id
| id := pop
| if id relop id goto L
| L:
| jump L

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *
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Optimization Concepts

• Inside Basic Blocks
• Between/Around Basic Blocks: Control Flow 

Graphs
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Definition. Basic Blocks

• A basic block is a maximal sequence of 
instructions with: 
– no labels (except at the first instruction), and 
– no jumps (except in the last instruction)

• Idea: 
– Cannot jump into a basic block (except at beginning)
– Cannot jump out of a basic block (except at end)
– Each instruction in a basic block is executed after 

all the preceding instructions have been executed
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Basic Block Example

• Consider the basic block
1. L: 
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L

• No way for (3) to be executed without (2) 
having been executed right before
– We can change (3) to w := 3 * x
– Can we eliminate (2) as well?
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Definition. Control-Flow Graphs

• A control-flow graph is a directed graph with
– Basic blocks as nodes
– An edge from block A to block B if the execution 

can flow from the last instruction in A to the first 
instruction in B

– E.g., the last instruction in A is jump LB
– E.g., the execution can fall through from block A to 

block B

• Frequently abbreviated as CFG ... too bad we 
already used this..
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Control-Flow Graphs. Example.

• The body of a method (or 
procedure) can be 
represented as a control-
flow graph

• There is one initial node
• All “return” nodes are 

terminal

x := 1
i := 1

L:
x := x * x
i := i + 1
if i < 10 goto L
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Optimization Overview

• Optimization seeks to improve a program’s utilization 
of some resource
– Execution time (most often) [instructions, memory access]
– Code size
– Network messages sent, 
– Battery power used, etc.

• Optimization should not alter what the program 
computes
– The answers must still be the same (* sometimes relaxed for 

floating point numbers… a bad idea, though)
– Same behavior on bad input (?) e.g. array bounds? 
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A Classification of Optimizations

• For languages like Java there are three 
granularities of optimizations
1. Local optimizations

• Apply to a basic block in isolation
2. Global optimizations

• Apply to a control-flow graph (function body) in isolation
3. Inter-procedural optimizations

• Apply across call boundaries

• Most compilers do (1), many do (2) and very 
few do (3)
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Cost of Optimizations

• In practice, a conscious decision is often not to 
implement the fanciest optimization known

• Why?
– Some optimizations are hard to implement. Programs are 

tricky to write/debug
– Some optimizations are costly in terms of compilation time. 

Even exponential time O(2s), for program of size s.
– Some fancy optimizations are both hard and costly!

• Depends on goal: 
– maximum improvement with acceptable cost / debuggability
– vs. beat competitive benchmarks
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Local Optimizations

• The simplest form of optimizations
• No need to analyze the whole procedure body

– Just the basic block in question

• Example: algebraic simplification
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Algebraic Simplification

• Some statements can be deleted
x := x + 0
x := x * 1

• Some statements can be simplified
x := x * 0 ⇒ x := 0  ;;x not “infinity” or NaN
y := y ^ 2 ⇒ y := y * y
x := x * 8 ⇒ x := x << 3
x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)
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Constant Folding

• Operations on constants can be computed at compile 
time

• In general, if there is a statement
x := y op z

– And y and z are constants (and op has no side effects)
– Then y op z can be computed at compile time [if you are 

computing on the same machine, at least. Eg. 32 vs 64 bit?]
• Example: x := 2 + 2 ⇒ x := 4
• Example: if 2 < 0 jump L can be deleted
• When might constant folding be dangerous?
• Why would anyone write such stupid code?
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Flow of Control Optimizations

• Eliminating unreachable code:
– Code that is unreachable in the control-flow graph
– Basic blocks that are not the target of any jump or 

“fall through” from a conditional
– Such basic blocks can be eliminated

• Why would such basic blocks occur?
• Removing unreachable code makes the 

program smaller
– And sometimes also faster

• Due to memory cache effects (increased spatial locality)
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Using (Static) Single Assignment Form SSA

• Some optimizations are simplified if each 
register occurs only once on the left-hand 
side of an assignment

• Intermediate code can be rewritten to be in 
single assignment form
x := z + y                       b := z + y
a := x               ⇒ a := b
x := 2 * x                       x := 2 * b

(b is a fresh register)
• More complicated in general, due to loops
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Common Subexpression Elimination

• Assume
– Basic block is in single assignment form
– A definition x := is the first use of x in a block

• All assignments with same rhs compute the 
same value

• Example:
x := y + z                              x := y + z
… ⇒ …
w := y + z                             w := x
(the values of x, y, and z do not change in the … code)
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Copy Propagation

• If w := x appears in a block, all subsequent 
uses of w can be replaced with uses of x

• Example:
b := z + y                           b := z + y
a := b                   ⇒ a := b
x := 2 * a                           x := 2 * b

• This does not make the program smaller or 
faster but might enable other optimizations
– Constant folding
– Dead code elimination
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Copy Propagation and Constant Folding

• Example:
a := 5                                a := 5
x := 2 * a         ⇒ x := 10
y := x + 6                           y := 16
t := x * y                           t := x << 4
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Copy Propagation and Dead Code Elimination

If 
w := rhs appears (in a basic block)
w does not appear anywhere else in the program

Then 
the statement w := rhs is dead and can be eliminated
– Dead = does not contribute to the program’s result

Example:  (a is not used anywhere else)
x := z + y             b := z + y                  b := z + y
a := x          ⇒ a := b              ⇒ x := 2 * b
x := 2 * x            x := 2 * b
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Applying Local Optimizations

• Each local optimization does very little by itself
• Often the optimization seems silly “who would write 

code like that?” Answer: the optimizer, in a previous 
step!  That is: typically optimizations interact so that 
performing one optimization enables other opts.

• Typical optimizing compilers repeatedly perform 
optimizations until no more improvement is produced.

• The optimizer can also be stopped at any time to limit 
the compilation time
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An Example

• Initial code:
a := x ^ 2 
b := 3
c := x
d := c * c
e := b * 2 
f := a + d
g := e * f
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An Example

• Algebraic optimization:
a := x ^ 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f
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An Example

• Algebraic optimization:
a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f
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An Example

• Copy propagation:
a := x * x 
b := 3
c := x
d := c * c
e := b << 1 
f := a + d
g := e * f
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An Example

• Copy propagation:
a := x * x 
b := 3
c := x
d := x * x
e := 3 << 1 
f := a + d
g := e * f
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An Example

• Constant folding:
a := x * x 
b := 3
c := x
d := x * x
e := 3 << 1
f := a + d
g := e * f
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An Example

• Constant folding:
a := x * x 
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f
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An Example

• Common subexpression elimination:
a := x * x
b := 3
c := x
d := x * x
e := 6 
f := a + d
g := e * f
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An Example

• Common subexpression elimination:
a := x * x
b := 3
c := x
d := a
e := 6 
f := a + d
g := e * f
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An Example

• Copy propagation:
a := x * x 
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f
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An Example

• Copy propagation:
a := x * x 
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f
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An Example

• Dead code elimination:
a := x * x 
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f
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An Example

• Dead code elimination:
a := x * x 

f := a + a
g := 6 * f

• This is the final form
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Peephole Optimizations on Assembly Code

• The optimizations presented before work on 
intermediate code
– They are target independent
– But they can be applied on assembly language also

• Peephole optimization is an effective 
technique for improving assembly code
– The “peephole” is a short sequence of (usually 

contiguous) instructions
– The optimizer replaces the sequence with another 

equivalent one (but faster)
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Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement 
rules

i1, …, in → j1, …, jm

where the rhs is the improved version of the lhs
• Example:

move $a $b, move $b $a → move $a $b
– Works if move $b $a is not the target of a jump

• Another example
addiu $a $a i, addiu $a $a j → addiu $a $a i+j
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Peephole Optimizations (Cont.)

• Many (but not all) of the basic block 
optimizations can be cast as peephole 
optimizations
– Example: addiu $a $b 0  → move $a $b
– Example: move $a $a       →
– These two together eliminate addiu $a $a 0

• Just as with other local optimizations, 
peephole optimizations need to be applied 
repeatedly to get maximum effect
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Local Optimizations. Notes.

• Intermediate code is helpful for many 
optimizations

• Many simple optimizations can still be applied 
on assembly language

• “Program optimization” is grossly misnamed
– Code produced by “optimizers” is not optimal in any 

reasonable sense
– “Program improvement” is a more appropriate term

• Next time: global optimizations
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