
Prof. Fateman CS164 Lecture 21 1

Local Optimizations

Lecture 21

Prof. Fateman CS164 Lecture 21 2

Lecture Outline

• Local optimization

• Next time: global optimizations

Prof. Fateman CS164 Lecture 21 3

Code Generation Summary

• We have discussed
– Runtime organization
– Simple stack machine code generation

• Our compiler goes directly from AST to assembly
language with a brief stop or two
– If we preserved environment data from typecheck, use that;
– cleanup other minor loose ends perhaps.
– Simple-compile.lisp does not perform optimizations

• Most real compilers use some optimization somewhere
(history of Fortran I..)

Prof. Fateman CS164 Lecture 21 4

When to perform optimizations

– On AST
• Pro: Machine independent
• Con: Too high level

– On assembly language
• Pro: Exposes more optimization opportunities
• Con: Machine dependent
• Con: Must reimplement optimizations when retargetting

– On an intermediate language between AST and
assembler

• Pro: Machine independent
• Pro: Exposes many optimization opportunities

Prof. Fateman CS164 Lecture 21 5

Intermediate Languages for Optimization

• Each compiler uses its own intermediate language
– IL design is still an active area of research

• Intermediate language = high-level assembly language
– Uses register names, but has an unlimited number
– Uses control structures like assembly language
– Uses opcodes but some are higher level

• E.g., push may translate to several assembly instructions
• Perhaps some opcodes correspond directly to assembly opcodes

• Usually not stack oriented.

Prof. Fateman CS164 Lecture 21 6

Texts often consider optimizing based on
Three-Address Intermediate Code

• Computations are reduced to simple forms like
x := y op z [3 addresses]

or maybe x := op y
– y and z can be only registers or constants (not expressions!)
– Also need control flow test/jump/call/

• New variables are generated, perhaps to be used only
once (SSA= static single assignment)

• The expression x + y * z is translated as
t1 := y * z
t2 := x + t1

– Each subexpression then has a “home” for its value

Prof. Fateman CS164 Lecture 21 7

How hard to generate this kind of Intermediate
Code?

• Similar technique to our assembly code
generation

• Major differences
– Use any number of IL registers to hold

intermediate results
– Not stack oriented

• Same compiler organization..

Prof. Fateman CS164 Lecture 21 8

Generating Intermediate Code (Cont.)

• Igen(e, t) function generates code to compute
the value of e in register t

• Example:
igen(e1 + e2, t) =

igen(e1, t1) ;(t1 is a fresh register)
igen(e2, t2) ;(t2 is a fresh register)
t := t1 + t2 ;(instead of “+”)

• Unlimited number of registers
⇒ simple code generation

Prof. Fateman CS164 Lecture 21 9

We can define an Intermediate Language
formally, too...

P → S ; P | ε
S → id := id op id

| id := op id
| id := id
| push id
| id := pop
| if id relop id goto L
| L:
| jump L

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *

Prof. Fateman CS164 Lecture 21 10

Optimization Concepts

• Inside Basic Blocks
• Between/Around Basic Blocks: Control Flow

Graphs

Prof. Fateman CS164 Lecture 21 11

Definition. Basic Blocks

• A basic block is a maximal sequence of
instructions with:
– no labels (except at the first instruction), and
– no jumps (except in the last instruction)

• Idea:
– Cannot jump into a basic block (except at beginning)
– Cannot jump out of a basic block (except at end)
– Each instruction in a basic block is executed after

all the preceding instructions have been executed

Prof. Fateman CS164 Lecture 21 12

Basic Block Example

• Consider the basic block
1. L:
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L

• No way for (3) to be executed without (2)
having been executed right before
– We can change (3) to w := 3 * x
– Can we eliminate (2) as well?

Prof. Fateman CS164 Lecture 21 13

Definition. Control-Flow Graphs

• A control-flow graph is a directed graph with
– Basic blocks as nodes
– An edge from block A to block B if the execution

can flow from the last instruction in A to the first
instruction in B

– E.g., the last instruction in A is jump LB
– E.g., the execution can fall through from block A to

block B

• Frequently abbreviated as CFG ... too bad we
already used this..

Prof. Fateman CS164 Lecture 21 14

Control-Flow Graphs. Example.

• The body of a method (or
procedure) can be
represented as a control-
flow graph

• There is one initial node
• All “return” nodes are

terminal

x := 1
i := 1

L:
x := x * x
i := i + 1
if i < 10 goto L

Prof. Fateman CS164 Lecture 21 15

Optimization Overview

• Optimization seeks to improve a program’s utilization
of some resource
– Execution time (most often) [instructions, memory access]
– Code size
– Network messages sent,
– Battery power used, etc.

• Optimization should not alter what the program
computes
– The answers must still be the same (* sometimes relaxed for

floating point numbers… a bad idea, though)
– Same behavior on bad input (?) e.g. array bounds?

Prof. Fateman CS164 Lecture 21 16

A Classification of Optimizations

• For languages like Java there are three
granularities of optimizations
1. Local optimizations

• Apply to a basic block in isolation
2. Global optimizations

• Apply to a control-flow graph (function body) in isolation
3. Inter-procedural optimizations

• Apply across call boundaries

• Most compilers do (1), many do (2) and very
few do (3)

Prof. Fateman CS164 Lecture 21 17

Cost of Optimizations

• In practice, a conscious decision is often not to
implement the fanciest optimization known

• Why?
– Some optimizations are hard to implement. Programs are

tricky to write/debug
– Some optimizations are costly in terms of compilation time.

Even exponential time O(2s), for program of size s.
– Some fancy optimizations are both hard and costly!

• Depends on goal:
– maximum improvement with acceptable cost / debuggability
– vs. beat competitive benchmarks

Prof. Fateman CS164 Lecture 21 18

Local Optimizations

• The simplest form of optimizations
• No need to analyze the whole procedure body

– Just the basic block in question

• Example: algebraic simplification

Prof. Fateman CS164 Lecture 21 19

Algebraic Simplification

• Some statements can be deleted
x := x + 0
x := x * 1

• Some statements can be simplified
x := x * 0 ⇒ x := 0 ;;x not “infinity” or NaN
y := y ^ 2 ⇒ y := y * y
x := x * 8 ⇒ x := x << 3
x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

Prof. Fateman CS164 Lecture 21 20

Constant Folding

• Operations on constants can be computed at compile
time

• In general, if there is a statement
x := y op z

– And y and z are constants (and op has no side effects)
– Then y op z can be computed at compile time [if you are

computing on the same machine, at least. Eg. 32 vs 64 bit?]
• Example: x := 2 + 2 ⇒ x := 4
• Example: if 2 < 0 jump L can be deleted
• When might constant folding be dangerous?
• Why would anyone write such stupid code?

Prof. Fateman CS164 Lecture 21 21

Flow of Control Optimizations

• Eliminating unreachable code:
– Code that is unreachable in the control-flow graph
– Basic blocks that are not the target of any jump or

“fall through” from a conditional
– Such basic blocks can be eliminated

• Why would such basic blocks occur?
• Removing unreachable code makes the

program smaller
– And sometimes also faster

• Due to memory cache effects (increased spatial locality)

Prof. Fateman CS164 Lecture 21 22

Using (Static) Single Assignment Form SSA

• Some optimizations are simplified if each
register occurs only once on the left-hand
side of an assignment

• Intermediate code can be rewritten to be in
single assignment form
x := z + y b := z + y
a := x ⇒ a := b
x := 2 * x x := 2 * b

(b is a fresh register)
• More complicated in general, due to loops

Prof. Fateman CS164 Lecture 21 23

Common Subexpression Elimination

• Assume
– Basic block is in single assignment form
– A definition x := is the first use of x in a block

• All assignments with same rhs compute the
same value

• Example:
x := y + z x := y + z
… ⇒ …
w := y + z w := x
(the values of x, y, and z do not change in the … code)

Prof. Fateman CS164 Lecture 21 24

Copy Propagation

• If w := x appears in a block, all subsequent
uses of w can be replaced with uses of x

• Example:
b := z + y b := z + y
a := b ⇒ a := b
x := 2 * a x := 2 * b

• This does not make the program smaller or
faster but might enable other optimizations
– Constant folding
– Dead code elimination

Prof. Fateman CS164 Lecture 21 25

Copy Propagation and Constant Folding

• Example:
a := 5 a := 5
x := 2 * a ⇒ x := 10
y := x + 6 y := 16
t := x * y t := x << 4

Prof. Fateman CS164 Lecture 21 26

Copy Propagation and Dead Code Elimination

If
w := rhs appears (in a basic block)
w does not appear anywhere else in the program

Then
the statement w := rhs is dead and can be eliminated
– Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)
x := z + y b := z + y b := z + y
a := x ⇒ a := b ⇒ x := 2 * b
x := 2 * x x := 2 * b

Prof. Fateman CS164 Lecture 21 27

Applying Local Optimizations

• Each local optimization does very little by itself
• Often the optimization seems silly “who would write

code like that?” Answer: the optimizer, in a previous
step! That is: typically optimizations interact so that
performing one optimization enables other opts.

• Typical optimizing compilers repeatedly perform
optimizations until no more improvement is produced.

• The optimizer can also be stopped at any time to limit
the compilation time

Prof. Fateman CS164 Lecture 21 28

An Example

• Initial code:
a := x ^ 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

Prof. Fateman CS164 Lecture 21 29

An Example

• Algebraic optimization:
a := x ^ 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

Prof. Fateman CS164 Lecture 21 30

An Example

• Algebraic optimization:
a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f

Prof. Fateman CS164 Lecture 21 31

An Example

• Copy propagation:
a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f

Prof. Fateman CS164 Lecture 21 32

An Example

• Copy propagation:
a := x * x
b := 3
c := x
d := x * x
e := 3 << 1
f := a + d
g := e * f

Prof. Fateman CS164 Lecture 21 33

An Example

• Constant folding:
a := x * x
b := 3
c := x
d := x * x
e := 3 << 1
f := a + d
g := e * f

Prof. Fateman CS164 Lecture 21 34

An Example

• Constant folding:
a := x * x
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

Prof. Fateman CS164 Lecture 21 35

An Example

• Common subexpression elimination:
a := x * x
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f

Prof. Fateman CS164 Lecture 21 36

An Example

• Common subexpression elimination:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f

Prof. Fateman CS164 Lecture 21 37

An Example

• Copy propagation:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f

Prof. Fateman CS164 Lecture 21 38

An Example

• Copy propagation:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f

Prof. Fateman CS164 Lecture 21 39

An Example

• Dead code elimination:
a := x * x
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f

Prof. Fateman CS164 Lecture 21 40

An Example

• Dead code elimination:
a := x * x

f := a + a
g := 6 * f

• This is the final form

Prof. Fateman CS164 Lecture 21 41

Peephole Optimizations on Assembly Code

• The optimizations presented before work on
intermediate code
– They are target independent
– But they can be applied on assembly language also

• Peephole optimization is an effective
technique for improving assembly code
– The “peephole” is a short sequence of (usually

contiguous) instructions
– The optimizer replaces the sequence with another

equivalent one (but faster)

Prof. Fateman CS164 Lecture 21 42

Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement
rules

i1, …, in → j1, …, jm

where the rhs is the improved version of the lhs
• Example:

move $a $b, move $b $a → move $a $b
– Works if move $b $a is not the target of a jump

• Another example
addiu $a $a i, addiu $a $a j → addiu $a $a i+j

Prof. Fateman CS164 Lecture 21 43

Peephole Optimizations (Cont.)

• Many (but not all) of the basic block
optimizations can be cast as peephole
optimizations
– Example: addiu $a $b 0 → move $a $b
– Example: move $a $a →
– These two together eliminate addiu $a $a 0

• Just as with other local optimizations,
peephole optimizations need to be applied
repeatedly to get maximum effect

Prof. Fateman CS164 Lecture 21 44

Local Optimizations. Notes.

• Intermediate code is helpful for many
optimizations

• Many simple optimizations can still be applied
on assembly language

• “Program optimization” is grossly misnamed
– Code produced by “optimizers” is not optimal in any

reasonable sense
– “Program improvement” is a more appropriate term

• Next time: global optimizations

	Local Optimizations
	Lecture Outline
	Code Generation Summary
	When to perform optimizations�
	Intermediate Languages for Optimization
	Texts often consider optimizing based on Three-Address Intermediate Code
	How hard to generate this kind of Intermediate Code?
	Generating Intermediate Code (Cont.)
	We can define an Intermediate Language formally, too...
	Optimization Concepts
	Definition. Basic Blocks
	Basic Block Example
	Definition. Control-Flow Graphs
	Control-Flow Graphs. Example.
	Optimization Overview
	A Classification of Optimizations
	Cost of Optimizations
	Local Optimizations
	Algebraic Simplification
	Constant Folding
	Flow of Control Optimizations
	Using (Static) Single Assignment Form SSA
	Common Subexpression Elimination
	Copy Propagation
	Copy Propagation and Constant Folding
	Copy Propagation and Dead Code Elimination
	Applying Local Optimizations
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	Peephole Optimizations on Assembly Code
	Peephole Optimizations (Cont.)
	Peephole Optimizations (Cont.)
	Local Optimizations. Notes.

