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Virtual Machine Structure

Lecture 20
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Basics of the MJ Virtual Machine

Word addressed (in many other machines we are forever 
shifting by 2 bits to get from words to bytes or back.)

All instructions (appear to) fit in a single word.  All 
integers fit in a single word.  Everything else is 
“pointed to” and all pointers fit in a single word.

A minimum set of operations for MJ, but these could be 
expanded easily.

All arithmetic operations use a stack.
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Why a stack?

•The usual alternative is: a pile of registers.

•Why use registers in IC? 
•Many, (all?) current architectures have registers. 
•If you want to control efficiency, you need to know 
how to save/restore/spill registers.
•It is not too hard, if you have enough of them.

•Why use a stack?
•Some architectures historically were stack-dependent 
because they had few registers (like 4, or 16..).
•Some current architectures use a stack e.g. for 
floats in Pentium, 8 values.
•Minimize complexity for code generation.
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Why a stack? Are registers more work for IC?

•Generating code to load data into registers initially 
seems more complicated,
• Not by much: the compiler can keep track of which 
register has a value [perhaps by keeping a stack of 
variable-value pairs while generating code],
•And you did this in CS61c, but in your head, probably. 

•With a finite number of registers there is always the 
possibility of running out: “spill” to a stack? Or…
•(New architectures with 128 registers or more make 
running out unlikely but then what?: perhaps “error, 
expression too complicated, compiler fails”?).
•Opportunity to optimize: rearrange expressions to use 
minimum number of registers. Good CS theory problem 
related to graph coloring. (In practice, registers are 
finicky, aligned, paired, special purpose,…)
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Instructions: stack manipulation

pushi x push immediate the constant x on the top of the stack
used only for literals.  Same as iconst.  e.g. (iconst 43)
Only 24 bits for x(?). (larger consts in 2 steps??)

pusha x push address. pushes the address of x on stack.
e.g. pusha ="hello world".  We assume the assembler will
find some place for x.

Same as sconst. e.g. (sconst "hello")

pop pops top of stack; value is lost

dup pushes duplicate of top of stack
swap guess ☺
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A simple call / the thinking..

Consider a method
public int function F(){return 3; /*here*/

}

How might we compile F() ? Set up a label L001 for location /*here*/.
Save it on the stack.
Push the address of F on the stack.
Execute a (callj 0)  to call F, a function of 0 args
Execute an (args 0)  /* get params, here none {what about THIS}*/

the stack looks like
L001
3

Execute a (return).  Which jumps to L001, leaving 3 on the stack.
(exit 0)
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A simple call/ the program

public int function F(){return 3; /*here*/
}

(save L001)
(lvar 1 0)  // magic… get address of f on stack.. Details follow
(callj 0)    // call function of 0 args

L001:        // label to return to
(exit 0)

The program f looks like
(args 0)  // collect 0 arguments into environment.. 
(pushi 3)
(return)
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More fun, less work, look at SCAM

(setf *fact-test* (compile-scam
'( (define (main)

(print (factorial 5)))
(define (factorial n)
(if n

(* n (factorial (- n 1)))
1)))))



Prof. Fateman CS 164  Lecture 20 9

More fun, less work, look at SCAM

(setf *fact-test* (compile-scam
'( (define (main)

(print (factorial 5)))
(define (factorial n)
(if n

(* n (factorial (- n 1)))
1)))))

(pprint-code *fact-test*)
(run-vm (make-vm-state :code (assemble 

*fact-test*)))
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