
Prof. Fateman CS 164 Lecture 19 1

Introduction to Intermediate Code, virtual
machine implementation

Lecture 19

Prof. Fateman CS 164 Lecture 19 2

Where do we go from here?

AST
generation

Type
checking

Cleanup? Interpreter

intermediate
code/ assmblr

testing

Virtual
machine

in

out

Prof. Fateman CS 164 Lecture 19 3

Details of MJ what the VM must support
Details of the VM what IC to generate

intermediate
code/ assmblr

Virtual
machine

in

out

Prof. Fateman CS 164 Lecture 19 4

What is Intermediate Code? No single
answer…

• Any encoding further from the source and closer to
the machine. Possibilities:
– Same except remove line/column numbers!
– Change all parameter or local NAMES to stack offset counts
– Change all global references (vars, methods) to vtable counts
– Possible spew out Lisp as an IC. [My favorite: map every

language you encounter into Common Lisp. Macro defs make it
possible to define an intermediate level language “especially
suited to IC” in Lisp.]

• Not (usually) machine code itself
• Usually some extra “abstraction”

– Imagine you have arbitrary numbers of registers for
calculations.

– Imagine you have “macro” instructions like x=a[i,j]

Prof. Fateman CS 164 Lecture 19 5

What is Intermediate Code? Advantages

• Generally relatively portable between machines
• One IC may support several languages (a typical set

might be C, C++, Pascal, Fortran) where the resources
needed are similar. (If you can support C, the rest of
them are pretty easy.)

• Languages with widely-differing semantics will not fit
in this restricted set and may require an extended IC.

• E.g. Java IC supporting Scheme is hard because
Scheme has 1st-class functions. Scheme IC supporting
Java is plausible structurally but might not be as
efficient.

Prof. Fateman CS 164 Lecture 19 6

Forms of Intermediate Code

Virtual stack machine
simplified “macro” machine

3-address code
A :=B op C

Register machine models
with unlimited number of registers, mapped to real
registers later

Tree form (= lisp program, more or less)

Prof. Fateman CS 164 Lecture 19 7

Using Intermediate Code

• We need to make some progress towards the
machine we have in mind
– Subject to manipulation, “optimization”
– Perhaps several passes
– Or, we can generate assembler
– Or, we could plop down in absolute memory

locations the binary instructions needed to execute
the program “compile-and-go” system. This was a
common “student compiler” technique for Pascal
and Fortran.

Prof. Fateman CS 164 Lecture 19 8

Reminder of what we are doing.. From a
tree representation like our AST..

• Instead of typechecking or interpreting the
code, we are traversing it and putting
together a list of instructions… generating IC
… that if run on a machine -- would execute
the program.

• In other words instead of interpreting or
typechecking a loop,or going through a loop
executing it, we write it out in assembler.

Prof. Fateman CS 164 Lecture 19 9

The simplest example

Compiling the MJ program segment … 3+4…

The string "3+4" [too simple to have line/column numbers]

parses to (Plus (IntegerLiteral 3) (IntegerLiteral 4))

typechecker approves and says it is of type int.

A program translating to lisp produces

(+ 3 4)

Which could be executed…
But we don’t really want Lisp, we want machine code. We could start
from the Lisp or from the AST, i.e. …. (Plus …)…

Prof. Fateman CS 164 Lecture 19 10

Just a simple stack machine (oversimplified)

Compiling
(+ 3 4)

(some-kind-of-compiler '(+ 3 4)) ;; I made-up name ☺
((pushi 3) (pushi 4) (+))

Result is a list of assembly language instructions
push immediate constant 3 on stack
push immediate constant 4 on stack
+ = take 2 args off stack and push sum on stack

Conventions: result is left on top of stack.
Location of these instructions unspecified.
Lengthy notes in simple-machine file describe virtual machine.

Prof. Fateman CS 164 Lecture 19 11

It doesn’t have to look like lisp if we write a
printing program

(pprint-code compiled-vector) ;; prints out…
pushi 3
pushi 4
+

Prof. Fateman CS 164 Lecture 19 12

Consider the file Simple-compiler.fasl

Load this file and you have functions for compiling
methods, exps, statements. You can trace them.
mj-c-method compiles one method
mj-c-exp compiles one expression
mj-c-statement compiles one statement

Each program calls “emit” to add to the generated
program some sequence of instructions.
Typically these are consed on to the front of a list
intended to become the “body” of a method. This list
which is then reversed, embroidered with other
instructions, and is ready to assemble.

Prof. Fateman CS 164 Lecture 19 13

Some FAQ. 1. Redundant work?

• Q: Going back to the AST for compiling, it
seems to me that I am re-doing things I
already did (or did 95%) for type-checking.

• A. You are right. Next time you write a
compiler (hehe) you will remember and maybe
you will save the information some way. E.g.
save the environment / inheritance hierarchy,
offsets for variables, type data used to
determine assembler instructions, etc.

Prof. Fateman CS 164 Lecture 19 14

FAQ 2. Where do the programs live?

• You might ask this question; how are the methods
placed in memory?

• For now we do not have to say, but we could let a
“loader” determine where to put each code segment in
memory. Each method can refer to instructions in its
body by a relative address; a call sets the program
counter (PC) to the top of the method’s code.

• In a “real” program, a loader would resolve the
references to methods /classes/ etc defined
elsewhere. MJ has no such problems. (discuss why?)

• Or we could let all this live in some world where there
is a symbol table (like Lisp) and lets us just grab the
definition when we want to get it. (Dynamic loading,
too)

Prof. Fateman CS 164 Lecture 19 15

FAQ 3: Too many layers?

• Q. There are too many pieces up in the air. Where do I start?
• A. Yes, we are faced with a multi-level target for understanding.
• That’s why we took it in steps up to here. Two more levels,

closely tied together.
• We produce code for the Assembler

– Understand the assembler input / output
– Requires understanding VM

• The VM determines what instructions make sense to generate to
accomplish tasks (esp. call/return, get/set data

• The programming language definition determines what we need.
E.g. Where does “this” object come from?
– Look at output of translator
– You see what to generate (or equivalent…)

Prof. Fateman CS 164 Lecture 19 16

The 2-pass assembler… (50 lines of code?)

What does the assembler program do with a list of
symbolic instructions – the reversed list mentioned previously?
1. Turn a list of instructions in a function into a vector.

;; count up the instructions and keep track of the labels
;; make a note of where the labels are (program counter
;; relative to start of function).
;; Create a vector of instructions.
;; The transformed "assembled" program can support fast
;; jumps forward and back.

(multiple-value-bind (length labels)
;extract 2 items from 1st pass
(asm-first-pass (fn-code fn))

(setf (fn-code fn) ;; put vector back instead of list
(asm-second-pass (fn-code fn)

length labels))
fn))

Prof. Fateman CS 164 Lecture 19 17

What does the assembler do?

• Transforms a list of symbolic instructions and
labels into a vector.

– Turn a list of instructions in a function into a vector.
– When there is a jump <label>, replace with a jump

<integer> where the <integer> is the location of that
<label>

• First pass merely counts up the instructions and
keeps track of the labels. Produces a lookup-table
(e.g. assoc. list) for label integer mapping.

• Second pass creates the vector with substitutions

Prof. Fateman CS 164 Lecture 19 18

The 1st pass counts up locations

(defun asm-first-pass (code)
"Return the label assoc list"
(let ((length 0)

(labels nil))
(dolist (inst code)

(if (label-p inst)
(push (cons inst length) labels)
(incf length)))

labels))
;; could return (values length labels) ☺

Prof. Fateman CS 164 Lecture 19 19

The 2nd pass resolves labels, makes vector

(defun asm-second-pass (code labels)
"Put code into code-vector, adjusting for labels."
(coerce
(map 'list

#'(lambda (inst)
(if (member (car inst) '(jump jumpn jumpz pusha call))

`(,(car inst)
,(cdr (assoc (second inst) labels))
,@(cddr inst))

inst))
(remove-if #'label-p code))

'vector))

Prof. Fateman CS 164 Lecture 19 20

The MJ Virtual Machine

The easy parts

Prof. Fateman CS 164 Lecture 19 21

It is a stack-based architecture simulated
by a Lisp program.

How does this differ from the MIPS architecture in CS61c?
1. No registers for values of variables
2. (there are some implicit registers fp, sp, pc)

Prof. Fateman CS 164 Lecture 19 22

It is a stack-based architecture simulated by a Lisp
program

• Some differences from CS61c MIPS/SPIM
architecture
– Registers not used for passing arguments
– No “caller saved” or “callee saved” registers
– Only implicit registers (e.g. program counter, frame pointer,

stack pointer)
– Debugging in the VM
– I/O much different
– No interrupts
– No jump delay slot
– No floating point co-processor
– Undoubtedly more differences

Prof. Fateman CS 164 Lecture 19 23

We set up an update-program-counter/
execute loop
(defun run-vm (vm)

;; set up small utilities
(loop
(vm-fetch vm) ; Fetch instruction / update PC
(case (car (vm-state-inst vm))
;; Variable/stack manipulation instructions
(lvar (vpush (frame (a1))))
(lset (set-frame (a1) (vpop)))
;;; etc etc
(pushi (vpush (a1)))
(pusha (vpush (a1)))
;; Branching instructions:
(jump (set-pc (a1)))
;;; etc
;; Function call/return instructions:

;; …..
;; Arithmetic and logical operations:

;; …..
;; Other:
;;;….
(t (error "Unknown opcode: ~a" (vm-state-inst vm)))))

Prof. Fateman CS 164 Lecture 19 24

The outer exception handling controller

(defun run-vm (vm)
;; set up small utilities

(handler-case

(loop
;;process stuff
)

(error (pe)
(format t "~%Caught error: ~a" pe)
(if (vm-state-crash-hook vm)

(funcall (vm-state-crash-hook vm) vm)
(vm-state-print vm)))))

Prof. Fateman CS 164 Lecture 19 25

List of Opcodes (I)

DETAILS in simple-machine.lisp

;; the EASY ones

;; +, *, -, <, and - Operations on two variables (e.g. pop a, b, push a-b)
;; not - Operates on one variable
;;
;; print - Pops an integer and prints it
;; read - Reads an integer and pushes it
;; exit s - Exits with status code s
;;
;; debug - Ignored by the machine; may be used for debugging hooks
;; break - Aborts execution; may be useful for debugging

Prof. Fateman CS 164 Lecture 19 26

List of Opcodes (II)

;; lvar i - Gets the ith variable from the stack frame
;; lset i - Sets the ith variable from the stack frame
;; pop - Pops the stack
;; swap - Swaps the top two elements
;; dup i - Duplicates the ith entry from top of stack
;; addi i - Adds an immediate value to the top of stack
;; alloc - Pops a size from the stack; allocates a new array of that size
;; alen - Pops an array, pushes the length
;; mem - Pops index and array; pushes array[index].
;; smem - Pops value, index, and array; sets array[index] = value.
;; pushi i - Push an immediate value
;; pusha i - Push an address
;;
;; jump a - Jumps to a
;; jumpz a - Pops val, jumps to a if it's zero
;; jumpn a - Pops val, jumps to a if it isn't zero
;; jumpi - Pops an address and jumps to it
;;
;; call f n - Calls function f with n arguments.
;; calli n - Calls a function with n arguments. Address popped from stack.
;; frame m - Push zeros onto the stack until there are m slots in the frame.
;; return - Returns from a call. Stack should contain just the return val.

Prof. Fateman CS 164 Lecture 19 27

Architecture for arithmetic is based on
underlying lisp arithmetic, e.g. + ≡ #’+

Machine arithmetic can be defined as anything we wish
(arbitrary precision? 16 bit, 32 bit, 64 bit?)

Prof. Fateman CS 164 Lecture 19 28

Machine + assembler in simple-machine.lisp

250 lines of code, including comments ☺

(defun run (exp) ;;exp is (cleaned-up-perhaps ast)

"compile and run MJ code"

(machine (assemble (mj-compile exp))))

(machine(assemble(mj-compile(cleanup(mj-parse
filename))))) is equivalent to run-mj, though we
should check for semantic errors in there, too.

Details, lots, in the on-line stuff; Discussion in
sections.

	Introduction to Intermediate Code, virtual machine implementation
	Where do we go from here?
	Details of MJ what the VM must support Details of the VM what IC to generate�
	What is Intermediate Code? No single answer…
	What is Intermediate Code? Advantages
	Forms of Intermediate Code
	Using Intermediate Code
	Reminder of what we are doing.. From a tree representation like our AST..
	The simplest example
	Just a simple stack machine (oversimplified)
	It doesn’t have to look like lisp if we write a printing program
	Consider the file Simple-compiler.fasl
	Some FAQ. 1. Redundant work?
	FAQ 2. Where do the programs live?
	FAQ 3: Too many layers?
	The 2-pass assembler… (50 lines of code?)
	What does the assembler do?
	The 1st pass counts up locations
	The 2nd pass resolves labels, makes vector
	The MJ Virtual Machine
	It is a stack-based architecture simulated by a Lisp program.
	It is a stack-based architecture simulated by a Lisp program
	We set up an update-program-counter/ execute loop
	The outer exception handling controller
	List of Opcodes (I)
	List of Opcodes (II)
	Architecture for arithmetic is based on underlying lisp arithmetic, e.g. + ´ #’+
	Machine + assembler in simple-machine.lisp

