
Prof. Fateman CS 164 Lecture 18 1

Functional MiniJava, Calling variations

Lecture 18

Prof. Fateman CS 164 Lecture 18 2

When to do assignments

DID YOU START ON
ASSIGNMENT 6 YET?

Prof. Fateman CS 164 Lecture 18 3

Why have a “functional” language

• Silly examples from Scheme
– (define (addn n)(lambda(x)(+ x n))) ;returns funct.
– (define addthree (addn 3))

• Less silly examples: encapsulate state, e.g. bank
account balance in CS61a examples

• Ways to accomplish similar results via Java “privacy”
of variables or methods

• Motivation for first-class functions-
– Eliminate need for other mechanisms
– Unifies concepts of functions and data

Prof. Fateman CS 164 Lecture 18 4

Do we need functions returning functions?

• Less silly examples: a translator that returns an answer as a function:
• (translate "x+sin(x)") which might return

(lambda(x)(+ x (sin x));

• (defdiff f(x))(+ x (sin x))
• ; could return (f x) and derivative e.g. 1+cos(x).
• ; or could return a (lambda (…) …) which could be compiled and called

later

(lambda (g0) ;; function generated automatically
(let ((t4 0) (f3 0) (t2 1) (f1 g0))
(setf f3 (sin g0))
(setf t4 (cos g0))
(setf t2 (+ t4 t2))
(setf f1 (+ f3 f1))
(values f1 t2)))

Prof. Fateman CS 164 Lecture 18 5

Contrast Translate to Addthree

• Translate takes expressions, perhaps strings,
and return expressions. Since expressions are
also programs potentially everything is happy

• Functions are, however, more than expressions
in that they also have environments… as in the
addthree, where n is bound to 3 in the
environment.

Prof. Fateman CS 164 Lecture 18 6

Changes to MJ to make it “functional” section 15.1

How will this work? Here’s an example

type foo= (int,String) -> int[]
//assume class String exists

type bar=(int->String, int) -> int->int

These say that a variable F of type foo may be assigned a value
which is a function which takes args that are int, String and
returns an array (how long??) of ints.

And that a variable B of of type bar may be assigned a function
which takes two args, one of which is a function int->String,
and the other an int. and returns another function of type int
-> int.

Prof. Fateman CS 164 Lecture 18 7

Lexical changes to MJ to make it “functional”

Lexical changes are simple. Add one keyword and
one operator

tokens for MJ -> type

Prof. Fateman CS 164 Lecture 18 8

Grammar changes to MJ to make it “functional”

New grammar rules for type declaration
ClassDecl type id = ty;
ty → ty -> ty
ty → (ty {,ty}) -> ty
ty → () -> ty
And for CallExp

New grammar rules for CallExp
exp → exp (exp {,exp}) ;actually unlikely to be LALR(1)

Prof. Fateman CS 164 Lecture 18 9

What’s this change to CallExp?

Must allow the use of an expression like F(x) in
the place we previously expected only a name
of a function/method. That is, the expression
F(x) may evaluate to a function g, in which
case one must call g.

We now allow a call like Add(3)(4)

Where Add(3) perhaps returns a function that adds
three to its argument.

Prof. Fateman CS 164 Lecture 18 10

Type Check changes to MJ to make it
“functional”

New typechecking for AST FunTy
Compare the signatures for 2 functions

carefully.
Deciding about structure vs name equivalence

again.
(personally, I think this would be a delicate business:

to match type bar=(int->string,int) -> int->int)

Prof. Fateman CS 164 Lecture 18 11

Interpreter Changes to MJ to make it
“functional”

In a traditional Scheme environment, no change!
The environments persist until the Lisp GC

removes them. Lists of bindings can look like
this.

env1

env2

Prof. Fateman CS 164 Lecture 18 12

Interpreter Changes to MJ to make it
“functional”

A stack interpreter cannot build such a tree. Its
lexical environments persist only while within
lexical scope. We need to preserve until
function, returned upward, is called. Here
env2 clobbers env1.

env1
env2

Prof. Fateman CS 164 Lecture 18 13

Example… of upward functional arg (return)

New function here..

Prof. Fateman CS 164 Lecture 18 14

What is “pure functional” ?

Equational reasoning about programs requires
that (say) f(3) always is the same.

Prohibits “side effects” forbidding f from doing
assignment, output, or input.

How to do this?
Assignment is easy: don’t allow it. Just allow

initial values to be set. Functions can bind new
parameters on call. Just not reset anything.

Prof. Fateman CS 164 Lecture 18 15

What is “pure functional” output like?

How to get around the output restriction. It is easily to write it
down in Lisp: Conceptually change this:

;main_prog ….
(print xyz);

do_more_stuff; maybe print other stuff
….

return_from_main;
;;by converting print to (cons xyz (rest of program…))
;; any prints in “do_more_stuff” will also be changed to conses

…
(print (cons xyz (cons (do_more_stuff) …. (return_from_main

)…)
…so all the output is stacked up until the program finishes

Prof. Fateman CS 164 Lecture 18 16

What is “pure functional” input like?

Oh, MJ has no input.. But if it DID have input.. Change :
;main_prog ….
(let ((x (read *std-io*)) ;; remember, no assignment, only bindings

(f x) ; use x..
to

(let ((x 12345)) ; whatever it would have read!
(f x)

or just
(f 12345)
Any function like read must, under the restrictions of pure

functional programming, always produce the same thing. That’s
what happens here.

Prof. Fateman CS 164 Lecture 18 17

What if we wanted to add this to MJ?

See pgm 15.4 in text for an new type, answer
This is the consing up of all the prints. A new

method exit() prints the answer.
And also a hacked up ReadByte which instead of

reading from some mysterious source, has an
argument which is what it would have read.

Prof. Fateman CS 164 Lecture 18 18

Remind me again why we would do this?

We can reason about functions (otherwise equals
will not be apparent. F(3) is equal to F(3) in
FP.)

Some programs look nicer, e.g. tree insertion,
program 15.3. But we probably knew that from
CS61a. That non-destructive tree insertion
was cool, destructive version was error-prone.

Prof. Fateman CS 164 Lecture 18 19

Remind me again why we would do this?

(defun ti(a tree) ;; tree insertion. Copy route to insert point
(cond ((null tree) (list a nil nil)) ;; make a tree with node=a, left, right

((< a (node tree)) ;;
(list (node tree) (ti a (left tree)) (right tree)))
(t (list (node tree)(left tree)(ti a (right tree))))))

(defun st(a tree) ;; search in a tree
(cond ((null tree) 'not-found)

((= a (node tree)) tree)
((< a (node tree)) (st a (left tree)))
(t (st a (right tree)))))

(defun node(x)(car x)) ;; data abstraction. Remember that?
(defun left(x)(cadr x)) ;; could also abstract out the comparison
(defun right(x)(caddr x))

(ti 5(ti 3 (ti 4 (ti 1 nil))))
(1 nil (4 (3 nil nil) (5 nil nil)))

Prof. Fateman CS 164 Lecture 18 20

Other issues of Chapter 15

• Call by name
– Important for exams (GRE etc)

• Lazy evaluation
– Variation, memoization based

Prof. Fateman CS 164 Lecture 18 21

Call by name (Important on CS GRE)

Invented for Algol 60. Often it has the same as call by
reference, but not always.

Define a function Q(a,x) {x=3; a=4}
Declare int z[]; z= new array[10] of 0; ….

Call Q(z[i],i) // ASSUME CALL BY NAME
results in setting z[3] to 4. versus…

Call Q(m,n)
Simply sets global n to 3, m to 4. Same as call by ref.

To implement call by name: each value is a thunk that
computes its value or location when used;

Prof. Fateman CS 164 Lecture 18 22

One implementation [equivalent, easier for humans
to reason about]: copy over the body..

define function Q(a,x) {x=3; a=4}
When you see the call to Q, copy over the body with the parameters

substituted in. Thus Q(z[i],i] becomes this:
{i=3;

z[i]=4}

An implementation must copy over the function body, renaming as
appropriate to avoid “other” conflicts.

It must not matter if we had defined Q(a,z) {z=3,a=4}
(The parameter z must be renamed.. E.g.
Q(a,Q_z) {Q_z=3,a=4} before copying the body over.

Prof. Fateman CS 164 Lecture 18 23

Lazy vs Strict

– Lazy evaluation helps avoid equivalence “if programs
halt”, sometimes. Values are computed only when
the results actually matter

– Opposite of lazy is “strict”.. All expressions are
evaluated as control flow reaches them, whether or
not their results are needed.

– Two variants, Lazy eval vs call-by-need…

Prof. Fateman CS 164 Lecture 18 24

Lazy evaluation

= call by need++. Available in a pure-functional situation. Each
“thunk” of call-by-name is now 2 cells: the thunk function + the
memoized value if it has been visited before.

You’ve seen this in CS61a. …Set up fibonacci function to remember
fib(0), fib(1), then [first time] compute fib(2)=fib(0)+fib(1) but
REMEMBER fib(2). Compute

fib(3)= fib(1)+fib(2) remembered etc.
This is potentially an enormous savings in heavily-recursive purely-

functional programs. For call-by-name or lazy evaluation, careful
compilation can make this efficient.

Argument against this: what a doofus programmer wrote a program
that was so inefficient?

Argument in favor: what could be simpler to write, and why force
the programmer to “optimize” what the computer can do?

Final putdown: the remembered fib program is linear, the
computation can be done in log time.

Prof. Fateman CS 164 Lecture 18 25

A thought: should cons evaluate its args?
(Should it be by-need? Or lazy?)

If you make the following arrangements:
instead of (cons a b), do (list ‘CONS ‘a ‘b)

Instead of (car x) do
(if (eq (car x) ‘CONS) (eval (cadr x)))
Instead of (cdr x) do

(if (eq (car x) ‘CONS) (eval (caddr x)))
;; really we can’t do (list ‘CONS ‘a ‘b) but need
(list ‘CONS (closure of a, environment) (closure of b,

environment)) … so we can do (eval a) or (eval b).
Look at it this way. No one knows what’s inside a cons cell without looking at

its car or cdr. So don’t compute it until someone looks. Pprint looks..

Prof. Fateman CS 164 Lecture 18 26

Call by value, copy-in/out, etc

Value : imagine all arguments which are simple, are
copied over into a space owned by the called program.
For example, stack space.

Function foo(a,b,c) { a=b+c;… }
changes nothing outside foo

Function foo(x, b,c) { a=b+c;… }
perhaps changes a outside foo.

Copy-in/out sometimes referred to as call by
value/return can be used (Fortran)– if there are no
other “aliased” access routes to variables, they are
equivalent. Local access fast, copying back is a cost.

Prof. Fateman CS 164 Lecture 18 27

Call by reference in FORTRAN

Function foo(a,b,c)= (a=b+c)
//this is not exactly FORTRAN syntax

call foo(3,4,5)
Print(3)

may result in printing 9.
This is not “correct usage” but has historically

happened in common implementations…

Prof. Fateman CS 164 Lecture 18 28

MJ function calls

As a practical semantic view, Java calls look rather like
lisp. Call by value, but all values are refs to objects.
The explicit passed arguments to a method are data
on a stack, copied there in the call process.

The call Foo(x,y,z) cannot change these names x, y, or z.
Just as Foo(1,2,3) cannot change the values of constants.
What does Foo(int a) { a=35; ..} do? Only local value for a

changes.
However, if x is an array, Foo(x) can change x[0], x[1]…

because a pointer to the array x is given to Foo.

	Functional MiniJava, Calling variations
	When to do assignments
	Why have a “functional” language
	Do we need functions returning functions?
	Contrast Translate to Addthree
	 Changes to MJ to make it “functional” section 15.1
	 Lexical changes to MJ to make it “functional”
	Grammar changes to MJ to make it “functional”
	What’s this change to CallExp?
	Type Check changes to MJ to make it “functional”
	Interpreter Changes to MJ to make it “functional”
	Interpreter Changes to MJ to make it “functional”
	Example… of upward functional arg (return)
	What is “pure functional” ?
	What is “pure functional” output like?
	What is “pure functional” input like?
	What if we wanted to add this to MJ?
	Remind me again why we would do this?
	Remind me again why we would do this?
	Other issues of Chapter 15
	Call by name (Important on CS GRE)
	One implementation [equivalent, easier for humans to reason about]: copy over the body..
	Lazy vs Strict
	Lazy evaluation
	A thought: should cons evaluate its args? (Should it be by-need? Or lazy?)
	Call by value, copy-in/out, etc
	Call by reference in FORTRAN
	MJ function calls

