
Prof. Fateman CS 164 Lecture 17 1

Memory allocation, garbage collection

Lecture 17

Prof. Fateman CS 164 Lecture 17 2

Types of memory management

Static: fixed when a program is loaded
Dynamic

Stack (sometimes more than one)
Heap

Explicitly managed : must call free
malloc / free
--many variations

Implicitly managed: done behind the scenes
Reference Counting
Garbage Collection (GC)
--Mark&Sweep, Copying, Conservative..

Prof. Fateman CS 164 Lecture 17 3

Why Dynamic?

Static means you have to know at compile time how big
your program’s data can be. FORTRAN (pre 1990) did
this.

You allocate the largest array you think you will need and
hope for the best. Advantage: You will never be
tossed out by OS for using too much memory in the
middle of computing.

Stack allocation means you can grow, but only last in,
first out. You must return storage in the reverse
order of its allocation. Sometimes works just fine for
a language design with nested scope. Sometimes you
run out of stack space. This could never happen in
fortran 66☺

Prof. Fateman CS 164 Lecture 17 4

Why Implicit Heap Management?

Explicit management is extremely error prone. (malloc,
free) It is a source of subtle bugs in every system
that uses it (including almost any large system written
in C!)

Lisp/Java argument: don’t even ask the programmer to
manage memory.

Heap allocation solve lots of technical problems: in a
programming language (Java), having EVERYTHING be
in the heap and all values pointers to objects in the
heap makes semantics neater.

Prof. Fateman CS 164 Lecture 17 5

Another solution to Heap Management?

.
Some systems solve the problem by never deallocating

memory, assuming that you will eventually kill the
whole process.

How long does your browser stay up?

Sometimes you have to reboot the whole operating
system.

Prof. Fateman CS 164 Lecture 17 6

In Lisp, is all data in the heap? Often not

Conses (i.e. lists, dotted pairs), yes
Arrays, yes usually
Arbitrary precision integers, yes

Numbers: maybe.
--Here’s a trick. If a pointer is a negative number
(leftmost bit is 1) maybe it can’t really be a pointer at
all. So make it an “immediate” number. You can do
arithmetic etc. with this “FIXNUM”. Instead of
“following a pointer” to a number, you fake it.

(Lisp also uses a stack for binding values and most
implementations use static space for binary programs
e.g. loaded from fasl files or written in asm, C,…

Prof. Fateman CS 164 Lecture 17 7

Reference Counts: an easy method

Every Heap cell has a count field , full-address size.
B= new cell init. to “hi” take cell from freelist
A:=B increment
A:=“bye” decrease hi’s count, increase bye’s count.

When count decrements to 0, there are no users of that
cell: put it on list of free storage.

hi 1

hi 1

hi 2

bye 1

Prof. Fateman CS 164 Lecture 17 8

Why use Reference Counts

If the cost of maintaining counts is small compared to
the other operations.

If it is important that the cost is assessed immediately
and is predictable (no clumpiness like GC). (though
this has mostly gone away with fast memory,
generational GC)

Prof. Fateman CS 164 Lecture 17 9

Why not use Reference Counts

Fear of not being able to collect “cycles” is often cited
as a problem.

When all is said and done, not as fast as GC, and uses
lots of memory for the count fields. In fact you can
have a lisp-like system with reference counts but a
cons cell would grow from 64 to 96 bits (with 32 bit
addresses) .

Why does a ref. count field have to be so large? Can we
use only a few bits?

Prof. Fateman CS 164 Lecture 17 10

Who uses Reference Counts

File systems. How many references or links are there to
a file? If none, you can delete it. The cost of
maintaining counts is small compared to the overhead
of file open/close.

Some computer systems with largish data objects (e.g.
something like Matlab, or Mathematica.)

Some defunct experimental lisp or lisp-like systems: esp.
if GC/paging is slow, RefCounts seems more plausible

(REFCO, BBN Lisp used a limited-width counter, 1,2,
many).

Prof. Fateman CS 164 Lecture 17 11

Why Garbage Collection (GC)?

GC is a winner if memory is cheap and easily available.
This combination is a relatively new phenomenon.

GC continues to be a popular academic topic that can
cross boundaries of software, architecture, OS.
Parallelism, distributed GC.

Revived interest with Java, too.
Conservative GC can be used even with systems for

which GC would not seem to be plausible.

Prof. Fateman CS 164 Lecture 17 12

Why not GC?

If you have so much memory, why not put it to use
instead of keeping it in reserve for GC?

Some GC algorithms stop the computation at odd
moments and keep the CPU and perhaps paging system
very busy for a while (“not real-time”).

Speed: Explicit allocation can be faster, assuming you
know what you are doing. (Can you prove your program
has no memory leak? Sometimes.) Stack allocation is
safe, too.

(depending on implementation) A “real” implementation is
complex: when to grow the free space, how to avoid
moving objects pointed to from registers, etc. Bad
implementations are common. See Allegro CL
implementation notes on GC parameters.

Prof. Fateman CS 164 Lecture 17 13

Kinds of GC

Mark and Sweep
Copying
Generational
Incremental, concurrent
Conservative (not in Appel)

Prof. Fateman CS 164 Lecture 17 14

Mark-and-Sweep. The simplest.

When you ask for a new record and the free list is
empty, you start a GC:

Mark: Start with roots: static names, stack variables.
March through all reachable nodes, marking them.
[how do you mark a node? In the node? In another block

of storage, 1 bit per node?]. If you reach an already
marked node, great. Turn back and do other stuff.

{You might use a lot of stack doing this. Problem??}

Sweep: Go through all the possible nodes in order, in
memory. For each one that is NOT marked, put it on
the free list. For each one that IS marked, clear the
mark.

Prof. Fateman CS 164 Lecture 17 15

Where are the
roots?

Prof. Fateman CS 164 Lecture 17 16

Cost of Mark-and-Sweep

Mark: suppose R cells of data are reachable. Marking is linear in R
so the cost is c1× R

Sweep: suppose H cells are in the heap. Sweeping is linear in H so
the cost is c2× H

Number of cells freed is H-R. We hope this is large, but it might
be small as you run out of memory…

Amortized cost (= cost per cell freed) is
(c1 R + c2 H)/(H-R)

If the cost is too high, algorithm should get more H from Operating
System!

Prof. Fateman CS 164 Lecture 17 17

Other considerations for Mark/Sweep: stack
space

Mark: This is done by a depth first search of the
reachable data, and just using calls could require stack
space linear in R. It is possible to simulate recursive
calls more economically but still linearly. (p 280) or by
hacking pointers backward as you mark, and then
reversing them later, you can use no storage. Timing
tests with pointer reversal suggest it is not a good
idea.

Prof. Fateman CS 164 Lecture 17 18

Improved Sweeping

Sweep: If you have several sizes of records, finding a
record of suitable size on the freelist may be some
work. Keep a separate freelist on a per-size basis? If
you run out of size X try size 2X, split it into two size
X pieces.

Prof. Fateman CS 164 Lecture 17 19

Copying GC

Divide Heap into two regions, OLD and NEW, delimited by high/low
limit markers.

Allocate space from OLD Heap.

When you run out, start from roots and copy all live data from OLD
to NEW.

Switch OLD/NEW.

Copying is not so obvious: when you copy a cell, look at all its
pointers. If they point to NEW space, fine. If they point to OLD
space, those items must also be copied.

Prof. Fateman CS 164 Lecture 17 20

Prof. Fateman CS 164 Lecture 17 21

Pro: Copying GC

Storage in use is compacted. Good for memory cache. If
there is a pointer from object A to object B, there is
a good chance that A and B will be adjacent in
memory.

Newly constructed lists are going to be in same cache
line, since the freelist is also contigouous.

Unused storage locations are not ever examined, saving
cache misses.

Prof. Fateman CS 164 Lecture 17 22

Con: Copying GC

Half the storage is not even used. That means that
GC is twice as frequent.
Items are being moved even if they don’t change: if they

are large, this is costly.
All references to storage must be indirect/ locations can

change at any time.

Prof. Fateman CS 164 Lecture 17 23

Generational GC

Based on the observation that in many systems (certainly
in long-running Lisp programs) many cons cell have a
very short life-span. Only a few last for a long time.

Idea: Divide up heap cells into generations. GC the
short-lived generation frequently. Promote cells that
live through a GC to an older generation. This
promotion is done by copying into a more permanent
space.

Rarely do a “complete” GC.

Prof. Fateman CS 164 Lecture 17 24

Pro: Generational GC

Usual GC is extremely fast (small fraction of second)
A good implementation reduces typical time in GC from

30% to much less… 5%?

Prof. Fateman CS 164 Lecture 17 25

Con: Generational GC

The (rare) full GC can be expensive.
Elaborate programming and instrumentation:

Extra bookkeeping to maintain pointers from
old generations to new; this can add to the in-
line instruction generation. When something
in an old generation changes, GC must use it to
trace new data (new root info).

Similar to copying, but with more than 2 spaces;
data can move at any time a GC is possible.

Prof. Fateman CS 164 Lecture 17 26

Prof. Fateman CS 164 Lecture 17 27

Conservative GC

Imagine doing a mark and sweep GC, but not knowing for
sure if a cell has a pointer in it or some other data.

If it looks like a pointer (that is, is a valid word-aligned
address within heap memory bounds), assume that it
IS a pointer, and trace that and other pointers in
that record too.

Any heap data that is not marked in this way is garbage
and can be collected. (There are no pointers to it.)

Prof. Fateman CS 164 Lecture 17 28

Pro: Conservative GC

It can be imposed upon systems “externally” and after
the fact.

Doesn’t need extra mark bits (presumably finds some
other place for them)

Prof. Fateman CS 164 Lecture 17 29

Con: Conservative GC

Assumes we know what a pointer looks like: it is not
munged up or encoded in an odd way, it doesn’t point
to the middle of a structure, or if so, we make special
efforts to keep pointers live.

Not so fast or efficient or clever as generational GC.
Sometimes marks nonsense when a data item looks like

an address but is not.
(Note: real lisp systems tend not to just use full-word

pointers = addresses. This wastes too many bits! E.g.
fixnum encoding etc.)

Prof. Fateman CS 164 Lecture 17 30

Current technology

Almost all serious Lisp systems use generational GC.
Java implementations apparently vary (e.g in C might use

generational GC on top of C).

For any long-term continuously-running system, a correct
and efficient memory allocation system is extremely
important. Rebooting an application (or even a whole
operating system) periodically to kill off bloated
memory is very inconvenient for “24/7” available
systems.

I have to kill my Netscape browser every few days…
(ESS5 anecdote)
Further reading: Paul Wilson Survey of Garbage

Collection

	Memory allocation, garbage collection�
	Types of memory management
	Why Dynamic?
	Why Implicit Heap Management?
	Another solution to Heap Management?
	In Lisp, is all data in the heap? Often not
	Reference Counts: an easy method
	Why use Reference Counts
	Why not use Reference Counts
	Who uses Reference Counts
	Why Garbage Collection (GC)?
	Why not GC?
	Kinds of GC
	Mark-and-Sweep. The simplest.
	Cost of Mark-and-Sweep
	Other considerations for Mark/Sweep: stack space
	Improved Sweeping
	Copying GC
	Pro: Copying GC
	Con: Copying GC
	Generational GC
	Pro: Generational GC
	Con: Generational GC
	Conservative GC
	Pro: Conservative GC
	Con: Conservative GC
	Current technology

