
Prof. Fateman CS 164 Lecture 15 1

Language definition by
interpreter, translator,

continued
Lecture 15

Prof. Fateman CS 164 Lecture 15 2

So far, two ways of looking at MJ
for executing code

• MJ interpreter (see simple-interp.lisp)
• MJ translator into Common Lisp (see

simple-translate.lisp)
– Common Lisp can be translated into machine

language

Prof. Fateman CS 164 Lecture 15 3

MJ interpreter
• Environment includes all Class data
• Method calls require setting up a new stack

frame
– All formal parameters matched to actual parameters
– Stack environment then passed to interpreter

recursively
– Statements in method body evaluated
– Return from method call pops frame from stack
– To test --Try running (say) Factorial, tracing mj-call or

mj-dispatch or mj-new-frame or insert output
statements (format t "~%xxx=~s" xxx)

Prof. Fateman CS 164 Lecture 15 4

MJ translator
• Running AST through the translator produces a new

(file) of Lisp code.
• Environment still has Class methods.
• “New” programs produce instances.
• Method calls changed into Lisp function calls.
• Lisp takes care of all the rest, in particular

– All formal parameters matched to actual parameters
– Stack environment then passed to interpreter recursively
– Statements in method body executed by Lisp
– Return from method returns Lisp stack to state previous to

method call
– Just trace names, e.g. mjl-ClassName-MethodName

Prof. Fateman CS 164 Lecture 15 5

MJ translator

• Consider Factorial.java.
• The translator produces about 24 lines of

lisp.

Prof. Fateman CS 164 Lecture 15 6

Factorial in MJ
class Factorial{

public static void main(String[] a){
System.out.println(new Fac().ComputeFac(10));

}}

class Fac {
public int ComputeFac(int num){
int num_aux ;
if (num < 1)

num_aux = 1 ;
else

num_aux = num * (this.ComputeFac(num-1)) ;
return num_aux ;

}
}

Prof. Fateman CS 164 Lecture 15 7

Compiled Factorial
;; Fac::ComputeFac
(defun mjl-Fac-ComputeFac (this L1) ; L1 is num
(let ((L2 0)) ; L2 is num_aux
(if (< L1 1)

(setf L2 1)
(setf L2

(* L1
(let* ((obj this) (vtable (elt obj 0))) ;recursive call. Explain obj

(funcall (gethash 'ComputeFac vtable) obj (- L1 1))))))
L2))

;; Vtable for Fac
(setf mjl-Fac (make-hash-table))
(setf (gethash 'ComputeFac mjl-Fac) #'mjl-Fac-ComputeFac)
;; Constructor for Fac
(defun mjl-Fac+ ()
(let ((obj (make-array '(1)))) (setf (elt obj 0) mjl-Fac) obj))

Prof. Fateman CS 164 Lecture 15 8

Compiled Factorial
;; Main routine
(format *mj-stdout* "~A~%" ;print the result

(let* ((obj (mjl-Fac+)) (vtable (elt obj 0))) ;create a Fac object
(funcall (gethash 'ComputeFac vtable) obj 10)))

Prof. Fateman CS 164 Lecture 15 9

Looking up vars at runtime
• Lisp translation makes the separation clear.

There are local variables handled by Lisp, and
other variables or methods are looked up in the
object.

• If we are doing our own interpreting, we have
two places to look
– Local parameters to a method
– Vars relative to this. (the object whose method is

being called)
• Variables in this class
• Variables in the parent class(es)

Prof. Fateman CS 164 Lecture 15 10

Adding bindings to an
environment.. Scheme

(defun extend-env1 (p1 a1 e)
;; add one binding to the environment
(cons (cons p1 a1) e))

(defun extend-env (p a e)
;; add a list of bindings to the environment. We have two
;; variable/value lists. (extend-env '(a b c) '(1 2 3) '((d . 4)))
;; -> ((a . 1) (b . 2) (c . 3) (d . 4))
(if (null p) e
(extend-env1 (car p)(car a)(extend-env (cdr p)(cdr a) e))))

Prof. Fateman CS 164 Lecture 15 11

Adding bindings to a MJ env

(defun mj-new-frame(method this actuals e)
;; pick out the formal args from method.
;; we will map them to the actuals.
;; make a new env, same as the old layout but with a new frame.
;; the frame is an array, and will contain formal <-> actual mapping.
;; Make a new environment.. Copy all the old bindings into it and put in
;; a few more. It looks like…
(cons (layout method) new-frame))

Prof. Fateman CS 164 Lecture 15 12

We need less info for typechecking

• The layout (classes, methods)
• The variables: we do not really need space for

values (though it won’t hurt much); we need the
types and the line/column locations of
declarations for error messages.

• We don’t need to actually locate (with array
offsets etc) the location of values, but if we
compute them, we can use this for compiling,
later.

	Language definition by interpreter, translator, continued�
	So far, two ways of looking at MJ for executing code
	MJ interpreter
	MJ translator
	MJ translator
	Factorial in MJ
	Compiled Factorial
	Compiled Factorial
	Looking up vars at runtime
	Adding bindings to an environment.. Scheme
	Adding bindings to a MJ env
	We need less info for typechecking

