Language definition by interpreter

Lecture 14

Prof. Fateman CS 164 Lecture 14

Routes to defining a language

* Formal mathematics
- Context free grammar for syntax
- Mathematical semantics (axioms, theorems, proofs)
- Rarely used alone (the downfall of Algol 68)
- Can be used to verify/prove properties (with difficulty)

* Informal textual
- CFG + natural language (Algol 60, Java Language Spec)
- Just natural language (Visual Basic for Dummies) -- examples
- Almost universally used

» Operational
- Here's a program that does the job
- Metacircular evaluator for Scheme, Lisp

- Evaluator/ interpreter for MiniJava
Prof. Fateman CS 164 Lecture 14 2

Typical compiler structure

Machine

Lex, parse

echeck, cleanup

Prof. Fateman CS 164 Lecture 14

“"MiniJava run” structure

Lex, parse

echeck, cleanup

> |interpretern

Prof. Fateman CS 164 LL\U‘E 4

Interpreter structure: advantages

interpreter

‘Interpreter is written in a higher level language:
source language derives semantics from interpreter
program and the semantics of the language of the
interpreter (e.g. whatever it is that "+" does in Lisp).

*What does EACH STATEMENT MEAN?
‘Exhaustive case analysis
*What are the boundaries of legal semantics?

‘What exactly is the model of scope, etc..
Prof. Fateman CS 164 Lecture 14

Interpreter structure: more advantages

interpreter

Prototyping / debugging easier (compare to machine level)
‘Portable intermediate form; here AST in Lisp as text; could be byte code
* intermediate form may be compact

-Security may be more easily enforced by restricting the interpreter or
machine model [e.g. if Lisp were "safe”, so would the interpreter be safe.]

In modern scripting applications, most time is spent in library subroutines
so speed is not usually an issue.

Prof. Fateman CS 164 Lecture 14 6

Interpreter structure: disadvantages

interpreter

- Typically unable to reach full machine speed. Repeatedly checking
stuff

-Difficult to transcend the limits of the underlying language
implementation (not full access to machine: if interpreter is in Lisp,
then "interrupts” are viewed through Lisp's eyes. If interpreter is in
Java, then Java VM presents restrictions.)

-Code depends on presence of infrastructure (all of Lisp??) so even a
tiny program starts out "big". [Historically, was more of an issue]

*(if meta-circular) bootstrapping... (digression on first PL)
Prof. Fateman CS 164 Lecture 14

An interpreter compromise (e.g. Java VM)

interpreter

-"Compile” to a hypothetical byte-code stack machine appropriate for
Java and maybe some other languages, easily simulated on any real
machine.

‘Implement this virtual byte-code stack machine on every machine of
intferest.

‘When speed is an issue, try Just In Time compiling; convert sections
of code to machine language for a specific machine. Or translate
Java to C or other target.

Prof. Fateman CS 164 Lecture 14

IMPORTANT OBSERVATION

* Much of the work that you do interpreting has
a corresponding kind of activity that you do in
typechecking or compiling.

+ This is why I prefer teaching CS164 by first
showing a detailed interpreter for the target
language.

Prof. Fateman CS 164 Lecture 14 9

Interpreter to TypeChecker / Static Analysis is a
small step

* Modest modification of an interpreter program can result in a new
program which is a typechecker. An interpreter has to figure out
VALUES and COMPUTE with them. A typechecker has to figure out
TYPES and check their validity.

*For example:

‘Interpreter: To evaluate a sequence {s;, s,}, evaluate s, then evaluate
s,, returning the last of these.

Typechecker: To TC a sequence {s;, s,}, TC s, then TC s,, returning the
type for s,.

‘Interpreter: To evaluate a sum (+ A B) evaluate A, evaluate B and add.

*Typechecker: To TC a sum, (+ A B) TC A to an int, TC B fo an int,
Then, return the type, i.e. Int.

‘Program structure is a walk over the AST.

Prof. Fateman CS 164 Lecture 14 10

How large is MJ typechecker / semantics ?

» Environment setup code for MJ is about 318
lines of code.

- Simple interpreter, including all environment
setup, is additional 290 lines of code, including
comments.

* Add to this file the code needed for type
checking and you end up with an extra 326
lines of code.

* Environment setup would be smaller if we
didn't anticipate type checking.

Prof. Fateman CS 164 Lecture 14 11

Interpreter to Compiler is a small step

* Modest modification of an interpreter program can result in a new
program which is a compiler.

‘For example:

‘Interpreter: To evaluate a sequence {s;, s}, evaluate s; then evaluate
s,, returning the last of these.

‘Compiler: To compile a sequence {s,, s,}, compile s; then compile s,
returning the concatenation of the code for s; and the code for s,.

‘Interpreter: To evaluate a sum (+ A B) evaluate A, evaluate B and add.

Compiler: To compile a sum, (+ A B) compile A, compile B, concatenate
code-sequences. Then, compile + to "add the results of the two
previous sections of code”. And concatenate that.

‘Program structure is a walk over the infermediate code AST.

Prof. Fateman CS 164 Lecture 14 12

AST for MJ program

AST is a data structure presenting the Program and all subparts
in a big tree reflecting ALL parsed constructs of the system.

Here's fact.java's AST with some parts abbreviated with #.

(Program
(MainClass (id Factorial 1) (id a 2)

(Print (Call (NewObject #) (id ComputeFac 3)
(ExpList #))))

(ClassDecls
(ClassDecl (id Fac 7) (extends nil) (VarDecls)
(MethodDecls (MethodDecl IntType # # # # #)))))

Prof. Fateman CS 164 Lecture 14 13

Start of the interpreter

(defun mj-run (ast)
"Interpret a MiniJava program from the AST"
(mj-statement (fourth (second ast)) ;; the body
(setup-mj-env ast) ;; set up env.
)

(Program
(MainClass (id Factorial 1) (id a 2)

(Print (Call (NewObject #) (id ComputeFac 3) (ExpList #))))
(ClassDecls

(ClassDecl (id Fac 7) (extends nil) (VarDecls)

(MethodDecls (MethodDecl IntType # # # # #))))); define ComputeFac

Prof. Fateman CS 164 Lecture 14 14

MJ statements

(defun mj-statement (ast env)
"Execute a MiniJava statement"
., we do a few of these in-line, defer others to subroutines. They could all be subroutines..
(cond
((eq (car ast) 'If) (if (eq (mj-exp-eval (cadr ast)env) "true)
(mj-statement (caddr ast) env) ;;then
(mj-statement (cadddr ast) env))) ;;else
((eq (car ast) 'While) (mj-while ast env)) :; um, do this on another slide
((eq (car ast) 'Print) (format t "~A~%" (mj-exp-eval (cadr ast))))
((eq (car ast) ‘Assign) (mj-set-value (id-name (second ast)) ;; look at this later
(mj-exp-eval (caddr ast) env)))
((eq (car ast) 'ArrayAssign) ;; etc
((eq (car ast) 'Block) (dolist (s (cdadr ast)) (mj-statement s env)))
.., add other statement types in here, if we extend MJ
(t
(pprint ast)
(error "Unexpected statement")))))

Prof. Fateman CS 164 Lecture 14 15

What else is needed?

» All the functions (mj-while etc etc) [simple]

» All the supporting data structures (symbol
table entries and their organization) [tricky]

Prof. Fateman CS 164 Lecture 14 16

if

COMPARE....
((eq (car ast) 'If)

(if (eq (mj-exp-eval (cadr ast)env) 'true)
(mj-statement (caddr ast) env) ;;then
(mj-statement (cadddr ast) env))) ;;else

(mj-if (mj-exp-eval (cadr ast)env)
(mj-statement (caddr ast) env) ;;then
(mj-statement (cadddr ast) env))) ;;else

(defun mj-if(a b c)(if a b c))
2 problems: in Lisp, (if XY Z) evaluates X. If X is non-nil, returns value of Y.

MJ's false is non-nil.
Also, in the call to mj-if, we have evaluated both branches. We lose.

Prof. Fateman CS 164 Lecture 14 17

Loops: While is very much like Lisp's while

((eq (car ast) "While)
(while (eq (mj-exp-eval (cadr ast) env) "true)
(mj-statement (caddr ast) env)))

Prof. Fateman CS 164 Lecture 14 18

Also part of the main interpreter: exp-eval
(defun mj-exp-eval (ast env)

"Evaluate a Mini-Java expression subtree"

(labels
((c (v) (eq (car ast) v)) ;; some shorthands (DSB idea!)
(el () (mj-exp-eval (second ast) env))

(e2 () (mj-exp-eval (third ast) env)))

(cond
((eq ast 'this) (mj-this env))
((atom ast) (error "Unexpected atomic expression"))
((c '"Not) (mj-not (el)))
((c 'And) (mj-and (second ast) (third ast) env))
((c '"Plus) (mj-+ (el) (e2))); also Times, Minus, LessThan

((c '"IntegerLiteral) (second ast)) ;also BooleanLiteral

((¢ 'ArrayLookup) (elt (el) (e2)))

((c "ArrayLength) (length (el)))

((c '"NewArray) (make-array “(, (el)) :initial-element 0))

((c '"NewObject) (mj-new-object (id-name (second (second ast)))
env))

((c 'call) (mj-call ast env)) ;; REALLY IMPORTANT

((c 'IdentifierExp) (mj-get-value (id-name (second ast)) env)))))
Prof. Fateman CS 164 Lecture 14 19

Revisit the statement interpreter

(labels
((c (v) (eq (car ast) v))
(e (i) (mj-exp-eval (nth i ast) env))
(s (i) (mj-statement (nth i ast) env)))

cond
((c 'Assign) (mj-set-value (id-name (second ast))
(e 2) env))
((c "ArrayAssign) (setf (elt (mj-get-value (id-name (second ast))
env)
(e 2))
(e 3)))

Prof. Fateman CS 164 Lecture 14

20

(looking at code for simple-interp)

* [no more slides of this]

Prof. Fateman CS 164 Lecture 14

21

	Language definition by interpreter�
	Routes to defining a language
	Typical compiler structure
	“MiniJava run” structure
	Interpreter structure: advantages
	Interpreter structure: more advantages
	Interpreter structure: disadvantages
	An interpreter compromise (e.g. Java VM)
	IMPORTANT OBSERVATION
	Interpreter to TypeChecker / Static Analysis is a small step
	How large is MJ typechecker / semantics ?
	Interpreter to Compiler is a small step
	AST for MJ program
	Start of the interpreter
	 MJ statements
	What else is needed?
	if
	Loops: While is very much like Lisp’s while
	Also part of the main interpreter: exp-eval
	Revisit the statement interpreter
	(looking at code for simple-interp)

