
Prof. Fateman CS 164 Lecture 13 1

Types

Lecture 13

Prof. Fateman CS 164 Lecture 13 2

Types

• What is a type?
– The notion varies from language to language

• Consensus
– A set of values
– A set of operations on those values

• Classes in an object-oriented language are an
elaboration of this notion to include relations
among types and operations (class inheritance,
method inheritance)

Prof. Fateman CS 164 Lecture 13 3

Types

• Often broken down into
– Elementary
– Compound

– Properties
• Set of possible values
• Set of operations (arithmetic? Assignment?, display?)
• Relations with other types
• Representation (location, stack, heap..)
• Constraints on use
• Scope of definition
• Coercions to other types

Prof. Fateman CS 164 Lecture 13 4

Typical built-in types

• Boolean
• Fixed precision integer (bit, byte, word; signed or not)
• Single Float IEEE 754 standard 32-bit
• Double Float IEEE 754 standard 64-bit
• Complex (Single, Double) Float
• Character (8 bit, maybe 16 bit Unicode)
• String
• Reference (address, pointer)
• File pointer
• Function (?) as a function address (but see, closures)
• Lisps usually have rationals, arbitrary prec. nums (bignums)
• Extended floats (usually extended-double 64+16)
• Decimal arithmetic IEEE 854? std

Prof. Fateman CS 164 Lecture 13 5

Typical compound construction

• Arrays (indexed sequence, uniform types)
• Record, Struct, defstruct (not uniform)
• Union (discriminated or not)
• Class or Object (CLOS in common lisp)
• Encapsulated function or closure (well, maybe

not typical, but available in functional
languages like Lisp, Scheme)

Prof. Fateman CS 164 Lecture 13 6

MJ types are rather impoverished, in case you
hadn’t noticed

• Integer, boolean are the only primitive types
• Array, class constructors
• How hard would it be to add strings, floats to

MJ?
– Data type formats are pretty easy
– Remember, associated OPERATIONS matter

Prof. Fateman CS 164 Lecture 13 7

Why Do We Need Type Systems?

Consider the assembly language fragment

add $r1, $r2, $r3
Meaning c(r2)+c(r3) r1 perhaps.

What are the types of $r1, $r2, $r3?

Prof. Fateman CS 164 Lecture 13 8

Types and Operations

• Certain operations are legal for values of each type

– It doesn’t make sense to add a function pointer and an
integer in C

– It does make sense to add two integers
– It might make sense to add an integer and a pointer (this is

what an array reference might be in some languages)

– But all have the same assembly language implementation!

Prof. Fateman CS 164 Lecture 13 9

Type Systems

• A language’s type system specifies which operations
are valid for which types

• The goal of type checking is to ensure that operations
are used with the correct types
– Enforces intended interpretation of values, because nothing

that comes later, in a conventional compiled language, will
check!

– Note that in some architectures the op-code “add” might look
at the run-time tags of the arguments and do add integer,
add double, add single. Not common (though there are
existing machines that do this)

• Type systems provide a concise formalization of the
semantic checking rules

Prof. Fateman CS 164 Lecture 13 10

What Can Types do For Us?

• Can detect certain kinds of errors
• Memory errors:

– Reading from an invalid pointer, etc.
• Violation of abstraction boundaries, trying to

alter an internal variable in an object that is
not public.

• Improve quality of compiled code

Prof. Fateman CS 164 Lecture 13 11

Type Checking : where to find them..

• Scope of types follows scope of language:

– Statically scoped/typed: All or almost all checking of types is
done, or could be done, as part of compilation (C, Java,
compiled CL)

– Dynamically scoped/typed: Almost all checking of types is
done as part of program execution. Wasteful to repeat
checking if the type of a datum does not change. A good idea
if programs operate over many types. (interpreted or
compiled but undeclared CL, Scheme)

– Advisory typed: (essentially only in CL.)

– Untyped: No type checking (machine code)

Prof. Fateman CS 164 Lecture 13 12

Named vs structure type agreement

• Let function foo(x:array of int):array of int=x
--no names, same type ..,

• Let type t = array of int
s= array of int

function foo(x:s):t=x
--different names, same type
Compare to (eq ‘(a b) ‘(a b)) vs (equal ‘(a b) ‘(a b))

in lisp

Prof. Fateman CS 164 Lecture 13 13

Types and subtypes in Common Lisp

• number, real, integer, float, single, double,
complex, byte,

• type expressions (integer 0 255), (or integer
single) (type1 (type2 type3)) {function spec}

• Much of this replaced by CLOS
• In its object-oriented system, a type

specification may be of supertype; the actual
parameter may be of a subtype.

•

Prof. Fateman CS 164 Lecture 13 14

Types and subtypes in Common Lisp

• new types defined by defstruct and by CLOS
• Defgeneric defines new functions by merging

name + function signature (types of
arguments) + inheritance

Prof. Fateman CS 164 Lecture 13 15

Defgeneric in Common Lisp

• defgeneric foo ((x fixnum) (y fixnum) ….),
• defgeneric foo ((x fixnum) (y double) ….),
• defgeneric foo ((x double) (y fixnum) ….),
• defgeneric foo ((x number) (y number) ….),
• etc uses the most specific foo
• Redefines all the foo programs any time

another defgeneric of foo

Prof. Fateman CS 164 Lecture 13 16

Compiling/ inferring types in Common Lisp

• (defun square(x)(* x x))
• Vs something like..
(defun square(x)
(typecase x

(fixnum (* x x))
(double-float (* x x))
(single-float (* x x))
(otherwise (* x x)))) ;; bignum, complex, rational…

Prof. Fateman CS 164 Lecture 13 17

The Type Wars

• Competing views on static vs. dynamic vs no
typing

• Static typing proponents say:
– Static checking catches many programming errors

at compile time
– Avoids overhead of runtime type checks

• Dynamic (or no)typing proponents say:
– Static type systems require saying many things

twice or more, creating programming errors
– Rapid prototyping easier in a dynamic type system

Prof. Fateman CS 164 Lecture 13 18

The Type Wars (Cont.)

• In practice, many statically typed languages
fail to fill all needs and have some “escape”
mechanism
– Unsafe casts in C, Java, Fortran, PL/I…

• Some languages try to infer types with
minimal or even no hints (ML). This seems to
be the best of both worlds, but the need to
be able to infer types constrains programs.

…. Lisp compilers can infer types sometimes, but
generally need nudges to work.

Prof. Fateman CS 164 Lecture 13 19

The Type Wars (Cont.)

• In ‘real world’:
– 10-100 people write modules, interfaces, etc then

debug,document,test,debug,test,test,test, beta release, v1.0,
v1.1, … strong typing can prop up the weak, find certain
mistakes without testing all paths

• In the student environment:
– 1-2 people write, debug, debug, debug, if it works once turn it

in. done… prototyping tools rewards the clever
– (comment from Paul Graham re beating the averages)

http://paulgraham.com/avg.html

	Types�
	Types
	Types
	Typical built-in types
	Typical compound construction
	MJ types are rather impoverished, in case you hadn’t noticed
	Why Do We Need Type Systems?
	Types and Operations
	Type Systems
	What Can Types do For Us?
	Type Checking : where to find them..
	Named vs structure type agreement
	Types and subtypes in Common Lisp
	Types and subtypes in Common Lisp
	Defgeneric in Common Lisp
	Compiling/ inferring types in Common Lisp
	The Type Wars
	The Type Wars (Cont.)
	The Type Wars (Cont.)

