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Overview of Semantic Analysis

Lecture 12
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Outline

• The role of semantic analysis in a compiler
– A laundry list of tasks
– Errors difficult or impossible to detect earlier
– Tied more to “meaning” of program rather than appearance

• Scope, OO inheritance
– Implementation: symbol tables

• Types (of data,  but also functions, methods)
– Type of a function or method includes number and types of 

parameters and return value
– Type of an array: base type, index set [how many subscripts?]
– Type of other objects: collection of names and types
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The Compiler So Far

• Lexical analysis
– Detects inputs with illegal sequences (non-tokens).
– Collects names, keywords, operators, numbers, etc.

• Parsing
– Allows inputs with well-formed parse trees, rejects others.
– Builds an abstract syntax tree.

• Semantic analysis
– Last “front end” phase
– Catches all static type errors in a strictly typed language
– May generate more kinds of errors and warnings
– Any program errors detected here can save time in debugging
– Some errors cannot be found even yet: (duplicate library entry 

points?)
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Why a Separate Semantic Analysis?

• Parsing cannot catch some errors

• Some language constructs are not context-free
– Examples: 

• Identifier declaration and use.
• Parameter / argument count agreement.
• [declare   foo:int …… foo=3 …..] //good, foo is defined
• [declare   bar:int …… foo=4 …..] //assume foo not defined, bad
• [foo(a,b):= … x=foo(1,2,3)…. ]     // bad, disagreement

– An “abstract version” of the variable declaration and use problem is 
to return “valid sentence” for items in this language:

{ wcw | w ∈ (a + b)* }

• The 1st w represents the declaration; the 2nd w represents a use, 
and c is the intervening program text. This is not context free.
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Why not CF?

– An abstract version of the problem is to return “valid sentence” for items in 
this language:

{ wcw | w ∈ (a + b)* }

Also note  [declare foo:int; declare foo:bool …] is not valid…
Another famous non-context free language is

{ an bn cn | n>0 }
That is, CFG cannot count 3 things; recall that DFA cannot count 2…

Proof is based on “pumping lemma for CF languages” similar to proof that an

bn is a problem for DFA. The texts first prove “Ogden’s Lemma” that, if 
the language of a CFG is infinite, then for strings u v w x y,

S ⇒* uvwxy, but also S ⇒* u vi w xi y. So if S ⇒* u ai bi ci y  then it also 
means S ⇒* u ai+1 bi ci+1 y  [beyond scope of CS164, but not hard]
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What Does Semantic Analysis Do?

• Checks of many kinds . . . 
• MJ typechecking program should check:

1. All identifiers are declared
2. Types and numbers of arguments and return values agree with use 

(declarations, method bodies)
3. Reserved built-in functions (e.g. Print) are not misused
4. Arithmetic is performed only on numeric values
5. Boolean expressions are used for conditionals
6. Arrays are instantiated properly
7. Declared identifiers are used (otherwise suspicious unused names!)

BIG WARNING “Same type” is subtle. Subclass object is an instance of its 
superclass too. 

Other items can also be checked, e.g. no two method parameters have the same 
name! no two local variables/methods/  have the same name. No built-in 
functions are redefined. . .
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What Does Semantic Analysis Do?

• Each programming language processor will check 
some items but maybe not others on that list.  

• Which items can, in principle, be checked depends on 
the language definition

• Can Lisp do semantic analysis?
– It must do some if “good” compiling is done
– It can do some analysis even when not necessary… when 

processing “defun” even if not compiling
– (Analyzing MCE from CS61a)
– If interpreting, it sometimes (must?) wait.  

• (defun foo(x)(foo x x x x x)) ;wrong. When is it noticed?
• (defun foo(x)(let ((y 1)(y 2)) y); what is returned?
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Scope

• Matching identifier declarations with uses
– Important static analysis step in most languages
– Including MJ, (even Lisp)
– In principle, the same name can be used repeatedly, 

though it might not  be great “software 
engineering” to reuse names often. 

– (name X scope) (declaration)  //compiletime
– (name X scope) (location [or value])  //runtime
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What’s Wrong?

• Example 1
class Fac {

public int ComputeFac(int num){
int num_aux ;  int foo;
if (num < 1)

num_aux = 1 ;
else 

num_aux = num * (this.ComputeFac(num-1)) ;
return num_aux ;
}
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Scope (Cont.)

• The scope of an identifier is the portion of a program 
in which that identifier is “accessible” – its binding to 
a value can be used

• The same identifier may refer to different things in 
different parts of the program
– That is, if different scopes for same name don’t overlap

• An identifier may have restricted scope
– Names and their values and types may be shadowed in 

different ways; binding by method/function call, local vars
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Static vs. Dynamic Scope

• Most languages these days have static scope
– Scope depends only on the program text, not run-

time behavior, and can be checked at compile-time 
(or type-checking time)

– Java, Common Lisp and Scheme have static scope

• A few languages are dynamically scoped
– Lisp (“special” variables only), SNOBOL
– Access to values in dynamic scope depends on 

execution history of the program
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Static Scoping Example (in Common Lisp)

(let ((x 1)                        ;;x bound to 1
(y 2)) 

(+ y                             ;;y bound to 2
(let((x 3))  

x                         ;;x bound to 3, returned from let

))
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Static vs Dynamic Scoping Example in CL

(defun foo(x) (bar)) ;; regular, static scope
(defun bar() (print x))
(foo 3) attempt to take value of unbound 

variable x

(defun foo(x)(declare (special x)) (bar))
(defun bar()  (declare (special x)) (print x))
(foo 3) 3
3
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Functional Scoping Example in CL

(setf r (let((x 5))
#'(lambda()  (format t "x=~s,y=~s" x y)))) 

(setf x 3)
(setf y ‘toplevel)
(funcall r) x=5, y=toplevel

(let ((y ‘middle)) (funcall r)) x=5, y=toplevel
Environments!
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Scope in MiniJava

• MiniJava identifier bindings are introduced by
– variable type declarations produce default bindings
– Formal parameters id’s

• Classes, methods and variable names are in the 
same “namespace.”

• Can we redefine boolean or int as a Class or 
are they in a separate namespace?
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“Scope” in CL is more complex

• Generally lexical scope for names.
• Some declarations (e.g. fixnum, special) can be file-wide
• “Defstructs” are global
• Some names cannot be rebound (e.g. car, cdr) without major 

effort
• Packages provide another scoping/ hiding mechanism– you can 

redefine car and cdr and use them in a package to shadow the 
regular programs.

• Details here are not important except to be aware that you 
haven’t seen all the possibilities!

• Contrary to Scheme, there are separate spaces for names of 
functions and variables. 

• So (setf car ‘(3 4)) (car car)  is ok.
• (setf list #’+)  (apply list car) -> 7  (apply #’list car)->(3 4)
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“Scope” in C is almost unused

• Variables declared in Blocks, rarely used
• Local scope for parameters and locals              
• Static external global
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Implementing the Most-Closely Nested Rule

• Much of semantic analysis can be expressed as 
a recursive descent of an AST
– Process an AST node n
– Process the children of n
– Finish processing the AST node n

• When performing semantic analysis on a 
portion of the AST, we need to know which 
identifiers are defined
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Implementing . . . (Cont.)

• Example: the scope of variable bindings is one subtree
Class foo{int x; 

E ;}

• x can be used in subtree E. In a classic lexical scope 
situation, we can hide x in the subtree E by defining a 
sub-block like {block int x; ….}

In a class/inheritance setup, we hide any x in parent by
Class foo extends parent{ int x; E;}  
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Symbol Tables

• Consider again: {int x; E;}
• Idea:

– Before processing (e.g. typechecking, evaluating) E, add (type, 
default value) definition of x to current definitions, 
overriding any other definition of x

– After processing E, remove definition of x and restore old 
definition of x

• A symbol table is a data structure that tracks the 
current bindings of identifiers, e.g. the name → type 
correspondence
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Runtime analogs of Symbol Tables can hold 
values.

;Because we know so much about them, we can 
;use very simple structures: a stack to do 
common lisp variable bindings
(let ((a 3))

(let  ((a 1)
(b a))

(+ a b))

(let ((a 3))
(let* ((a 1)   ;sequential

(b a))
(+ a b))
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A Simple Symbol Table Implementation, C-
style

• Structure is a stack

• Operations
– add_symbol(x)  push x and associated info, such as 

x’s type, on the stack
– find_symbol(x)  search stack, starting from top, 

for x. Return first x found or NULL if none found
– remove_symbol()  pop the stack
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A Simple Lisp Symbol Table Implementation

• Structure is the stack used by lisp to call and 
return functions.

• Storage is by (rebinding)  symbol table ST to 
(cons newbinding ST)
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A Simple Lisp Symbol Table Implementation

(setf globals '((glob1 . integer) (glob2 . string)))

(defun dotypechecking (expression symbol-table)
;; POINT A
;; look in expression.  If there is a reference to 
;; x in expression, look up x in symbol-table to
;; find type, or value or other property. ...
;; by (assoc x symbol-table) . Check that it is being used correctly.

;; If the expression is a ClassDecl in MJ, and defines new variable x say
;; (VarDecls (VarDecl IntType (id x  lc)))     (Statements  ….)

;; then  REBIND this way.
(dotypechecking STATEMENTS (cons(cons ‘x stuff) symbol-table)) ;rebind symbol-

table.
;; after you return,
;; if you continue processing more expressions, symbol-table
;; is same as POINT A
;; etc.
;; If you are finished, return typechecked results.
;; in the process of returning, the argument symbol-table is 
;; popped off lisp run-time stack.  
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A Simple Lisp Symbol Table Implementation

.  

Thus add_symbol  is   essentially cons.
find_symbol is assoc 
remove_symbol  is unnecessary! .. Removed by return

if there are several x's on symbol-table. No sweat. 
assoc get the right one.
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Limitations

• The simple symbol table works for let
– Symbols added one at a time
– Declarations are perfectly nested
– Could add a bunch of bindings all at once

• (dotypechecking expr (append list_of_bindings symboltab)

• What if your language allows same name for type, 
variable, function… distinguished by usage. Need 
fancier lookup.

• All names are handled lexically

• Other problems?



Prof. Fateman CS 164  Lecture 12 27

A Fancier Symbol Table

• Find _typename(x)
find_symbol(x,kind=‘type)

• Find_varname(x) find_symbol(x,kind=‘var)
• Find_funname(x) find_symbol(x,kind=‘fun)
• Rebinding make_ST_entry(x,kind=type) 

These turn out to be trivial Lisp programs; if 
assoc returns the wrong kind of entry, keep 
looking.
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Function (method) Definitions

• Method names can be used in the MJ text of a 
program before being defined. (mutually recursive, 
even)

• So we can’t check use-definition agreement using a 
sequential stack-based symbol table
– or even in one pass

• Solution
– Pass 1: Gather all function names, arg-types, return types
– Pass 2: Do the checking of all the bodies

• Semantic analysis can require multiple passes
– Usual design requires 1, maybe 2. 
– Type inference, badly designed, can use many.. (Ada)
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Why extra passes?

• Consider a language in which  a:=b+c  means, if 
a has type double-float, b and c are single-
float:  convert b to double, c to double, add 
double and store in a.

• If we parse bottom up, we don’t know what 
the type is of a  until “too late”

• synthesized vs. inherited attributes.
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Not everyone likes a stack

• Assoc takes time O(n) for n items on the 
stack. What if you have thousands of 
identifiers? (AWA page 110)?
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Thousands of identifiers? 

• Well, how likely is THAT? It happens in C code 
with piles of #include foo.h, .. But it doesn’t 
happen in lisp; a cost of checking (pro/con)..  

• A hash-table typically is used then:  every 
time one enters/leaves the scope of bindings, 
they are inserted/deleted from the hash-
table, and the OLD bindings if any, are 
restored.
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Still maybe you are in a hurry

• What’s your hurry?
– If you are using this as a RUN TIME mechanism for 

finding the values of variables, a stack implemented 
as a list is not good; a stack as an array may be ok.

– E.g.  X:=X+1  becomes:
• Find X on the stack  O(n) or O(1) or memoized
• Change its value
• What if X is very far away on the stack??
• Advantage: changing scope is trivial push/pop.

• Sometimes O(n) used in dynamic scope languages, called 
deep binding:   cheap binding, expensive access.
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Not everyone likes a stack (continued)

• Another runtime stack tactic
• You can always find the value for anything named X in a 

fixed location in a hash table or array, say location 1234
• Changing its value is easy.
• When a “new X” is needed in some scope, store the 

contents of 1234, or the “old X” on a stack.  Initialize 
location 1234 to the value for the new X. Any reference to 
the new X goes to 1234.  When the process exits the 
scope of new X, pop the value of the old X off the stack 
and put it in 1234.

• This is called shallow binding, used in dynamic scope 
languages (old lisp, also “special” variables in CL). Cheap 
access, expensive binding.
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Block structured symbol tables

• Here’s another mechanism
• Put all variables/bindings at a given lexical level L in an array, 

vector  or hashtable
• Make a collection of pointers to each lexical level  L, L-1 …1, 

0=global.
Now to look up the value/type/etc  of X, look for X in lexical level 

L, then L-1, until you find X or give up… So you look in L hash-
tables, rather than searching item by item through the stack.

When you leave a scope, you abandon the whole level L hashtable.
If you can actually pre-calculate that X is the 4th item in level 3

then you may be able to access its value in one indexed memory 
access, e.g. if you have level 1, 2, 3’s… address in a register. This 
is the usual situation for lexically scoped languages. For 
historical reasons this mechanism is sometimes called a DISPLAY
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Summary: basic static semantic analysis

• Information generated by a pass over the 
AST can be used
– For type analysis
– Checking other details of proper usage

• Must be coordinated with analysis of scope 
keep track of name – attribute 
correspondences
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