
Prof. Fateman CS 164 Lecture 12 1

Overview of Semantic Analysis

Lecture 12

Prof. Fateman CS 164 Lecture 12 2

Outline

• The role of semantic analysis in a compiler
– A laundry list of tasks
– Errors difficult or impossible to detect earlier
– Tied more to “meaning” of program rather than appearance

• Scope, OO inheritance
– Implementation: symbol tables

• Types (of data, but also functions, methods)
– Type of a function or method includes number and types of

parameters and return value
– Type of an array: base type, index set [how many subscripts?]
– Type of other objects: collection of names and types

Prof. Fateman CS 164 Lecture 12 3

The Compiler So Far

• Lexical analysis
– Detects inputs with illegal sequences (non-tokens).
– Collects names, keywords, operators, numbers, etc.

• Parsing
– Allows inputs with well-formed parse trees, rejects others.
– Builds an abstract syntax tree.

• Semantic analysis
– Last “front end” phase
– Catches all static type errors in a strictly typed language
– May generate more kinds of errors and warnings
– Any program errors detected here can save time in debugging
– Some errors cannot be found even yet: (duplicate library entry

points?)

Prof. Fateman CS 164 Lecture 12 4

Why a Separate Semantic Analysis?

• Parsing cannot catch some errors

• Some language constructs are not context-free
– Examples:

• Identifier declaration and use.
• Parameter / argument count agreement.
• [declare foo:int …… foo=3 …..] //good, foo is defined
• [declare bar:int …… foo=4 …..] //assume foo not defined, bad
• [foo(a,b):= … x=foo(1,2,3)….] // bad, disagreement

– An “abstract version” of the variable declaration and use problem is
to return “valid sentence” for items in this language:

{ wcw | w ∈ (a + b)* }

• The 1st w represents the declaration; the 2nd w represents a use,
and c is the intervening program text. This is not context free.

Prof. Fateman CS 164 Lecture 12 5

Why not CF?

– An abstract version of the problem is to return “valid sentence” for items in
this language:

{ wcw | w ∈ (a + b)* }

Also note [declare foo:int; declare foo:bool …] is not valid…
Another famous non-context free language is

{ an bn cn | n>0 }
That is, CFG cannot count 3 things; recall that DFA cannot count 2…

Proof is based on “pumping lemma for CF languages” similar to proof that an

bn is a problem for DFA. The texts first prove “Ogden’s Lemma” that, if
the language of a CFG is infinite, then for strings u v w x y,

S ⇒* uvwxy, but also S ⇒* u vi w xi y. So if S ⇒* u ai bi ci y then it also
means S ⇒* u ai+1 bi ci+1 y [beyond scope of CS164, but not hard]

Prof. Fateman CS 164 Lecture 12 6

What Does Semantic Analysis Do?

• Checks of many kinds . . .
• MJ typechecking program should check:

1. All identifiers are declared
2. Types and numbers of arguments and return values agree with use

(declarations, method bodies)
3. Reserved built-in functions (e.g. Print) are not misused
4. Arithmetic is performed only on numeric values
5. Boolean expressions are used for conditionals
6. Arrays are instantiated properly
7. Declared identifiers are used (otherwise suspicious unused names!)

BIG WARNING “Same type” is subtle. Subclass object is an instance of its
superclass too.

Other items can also be checked, e.g. no two method parameters have the same
name! no two local variables/methods/ have the same name. No built-in
functions are redefined. . .

Prof. Fateman CS 164 Lecture 12 7

What Does Semantic Analysis Do?

• Each programming language processor will check
some items but maybe not others on that list.

• Which items can, in principle, be checked depends on
the language definition

• Can Lisp do semantic analysis?
– It must do some if “good” compiling is done
– It can do some analysis even when not necessary… when

processing “defun” even if not compiling
– (Analyzing MCE from CS61a)
– If interpreting, it sometimes (must?) wait.

• (defun foo(x)(foo x x x x x)) ;wrong. When is it noticed?
• (defun foo(x)(let ((y 1)(y 2)) y); what is returned?

Prof. Fateman CS 164 Lecture 12 8

Scope

• Matching identifier declarations with uses
– Important static analysis step in most languages
– Including MJ, (even Lisp)
– In principle, the same name can be used repeatedly,

though it might not be great “software
engineering” to reuse names often.

– (name X scope) (declaration) //compiletime
– (name X scope) (location [or value]) //runtime

Prof. Fateman CS 164 Lecture 12 9

What’s Wrong?

• Example 1
class Fac {

public int ComputeFac(int num){
int num_aux ; int foo;
if (num < 1)

num_aux = 1 ;
else

num_aux = num * (this.ComputeFac(num-1)) ;
return num_aux ;
}

Prof. Fateman CS 164 Lecture 12 10

Scope (Cont.)

• The scope of an identifier is the portion of a program
in which that identifier is “accessible” – its binding to
a value can be used

• The same identifier may refer to different things in
different parts of the program
– That is, if different scopes for same name don’t overlap

• An identifier may have restricted scope
– Names and their values and types may be shadowed in

different ways; binding by method/function call, local vars

Prof. Fateman CS 164 Lecture 12 11

Static vs. Dynamic Scope

• Most languages these days have static scope
– Scope depends only on the program text, not run-

time behavior, and can be checked at compile-time
(or type-checking time)

– Java, Common Lisp and Scheme have static scope

• A few languages are dynamically scoped
– Lisp (“special” variables only), SNOBOL
– Access to values in dynamic scope depends on

execution history of the program

Prof. Fateman CS 164 Lecture 12 12

Static Scoping Example (in Common Lisp)

(let ((x 1) ;;x bound to 1
(y 2))

(+ y ;;y bound to 2
(let((x 3))

x ;;x bound to 3, returned from let

))

Prof. Fateman CS 164 Lecture 12 13

Static vs Dynamic Scoping Example in CL

(defun foo(x) (bar)) ;; regular, static scope
(defun bar() (print x))
(foo 3) attempt to take value of unbound

variable x

(defun foo(x)(declare (special x)) (bar))
(defun bar() (declare (special x)) (print x))
(foo 3) 3
3

Prof. Fateman CS 164 Lecture 12 14

Functional Scoping Example in CL

(setf r (let((x 5))
#'(lambda() (format t "x=~s,y=~s" x y))))

(setf x 3)
(setf y ‘toplevel)
(funcall r) x=5, y=toplevel

(let ((y ‘middle)) (funcall r)) x=5, y=toplevel
Environments!

Prof. Fateman CS 164 Lecture 12 15

Scope in MiniJava

• MiniJava identifier bindings are introduced by
– variable type declarations produce default bindings
– Formal parameters id’s

• Classes, methods and variable names are in the
same “namespace.”

• Can we redefine boolean or int as a Class or
are they in a separate namespace?

Prof. Fateman CS 164 Lecture 12 16

“Scope” in CL is more complex

• Generally lexical scope for names.
• Some declarations (e.g. fixnum, special) can be file-wide
• “Defstructs” are global
• Some names cannot be rebound (e.g. car, cdr) without major

effort
• Packages provide another scoping/ hiding mechanism– you can

redefine car and cdr and use them in a package to shadow the
regular programs.

• Details here are not important except to be aware that you
haven’t seen all the possibilities!

• Contrary to Scheme, there are separate spaces for names of
functions and variables.

• So (setf car ‘(3 4)) (car car) is ok.
• (setf list #’+) (apply list car) -> 7 (apply #’list car)->(3 4)

Prof. Fateman CS 164 Lecture 12 17

“Scope” in C is almost unused

• Variables declared in Blocks, rarely used
• Local scope for parameters and locals
• Static external global

Prof. Fateman CS 164 Lecture 12 18

Implementing the Most-Closely Nested Rule

• Much of semantic analysis can be expressed as
a recursive descent of an AST
– Process an AST node n
– Process the children of n
– Finish processing the AST node n

• When performing semantic analysis on a
portion of the AST, we need to know which
identifiers are defined

Prof. Fateman CS 164 Lecture 12 19

Implementing . . . (Cont.)

• Example: the scope of variable bindings is one subtree
Class foo{int x;

E ;}

• x can be used in subtree E. In a classic lexical scope
situation, we can hide x in the subtree E by defining a
sub-block like {block int x; ….}

In a class/inheritance setup, we hide any x in parent by
Class foo extends parent{ int x; E;}

Prof. Fateman CS 164 Lecture 12 20

Symbol Tables

• Consider again: {int x; E;}
• Idea:

– Before processing (e.g. typechecking, evaluating) E, add (type,
default value) definition of x to current definitions,
overriding any other definition of x

– After processing E, remove definition of x and restore old
definition of x

• A symbol table is a data structure that tracks the
current bindings of identifiers, e.g. the name → type
correspondence

Prof. Fateman CS 164 Lecture 12 21

Runtime analogs of Symbol Tables can hold
values.

;Because we know so much about them, we can
;use very simple structures: a stack to do
common lisp variable bindings
(let ((a 3))

(let ((a 1)
(b a))

(+ a b))

(let ((a 3))
(let* ((a 1) ;sequential

(b a))
(+ a b))

Prof. Fateman CS 164 Lecture 12 22

A Simple Symbol Table Implementation, C-
style

• Structure is a stack

• Operations
– add_symbol(x) push x and associated info, such as

x’s type, on the stack
– find_symbol(x) search stack, starting from top,

for x. Return first x found or NULL if none found
– remove_symbol() pop the stack

Prof. Fateman CS 164 Lecture 12 23

A Simple Lisp Symbol Table Implementation

• Structure is the stack used by lisp to call and
return functions.

• Storage is by (rebinding) symbol table ST to
(cons newbinding ST)

Prof. Fateman CS 164 Lecture 12 24

A Simple Lisp Symbol Table Implementation

(setf globals '((glob1 . integer) (glob2 . string)))

(defun dotypechecking (expression symbol-table)
;; POINT A
;; look in expression. If there is a reference to
;; x in expression, look up x in symbol-table to
;; find type, or value or other property. ...
;; by (assoc x symbol-table) . Check that it is being used correctly.

;; If the expression is a ClassDecl in MJ, and defines new variable x say
;; (VarDecls (VarDecl IntType (id x lc))) (Statements ….)

;; then REBIND this way.
(dotypechecking STATEMENTS (cons(cons ‘x stuff) symbol-table)) ;rebind symbol-

table.
;; after you return,
;; if you continue processing more expressions, symbol-table
;; is same as POINT A
;; etc.
;; If you are finished, return typechecked results.
;; in the process of returning, the argument symbol-table is
;; popped off lisp run-time stack.

Prof. Fateman CS 164 Lecture 12 25

A Simple Lisp Symbol Table Implementation

.

Thus add_symbol is essentially cons.
find_symbol is assoc
remove_symbol is unnecessary! .. Removed by return

if there are several x's on symbol-table. No sweat.
assoc get the right one.

Prof. Fateman CS 164 Lecture 12 26

Limitations

• The simple symbol table works for let
– Symbols added one at a time
– Declarations are perfectly nested
– Could add a bunch of bindings all at once

• (dotypechecking expr (append list_of_bindings symboltab)

• What if your language allows same name for type,
variable, function… distinguished by usage. Need
fancier lookup.

• All names are handled lexically

• Other problems?

Prof. Fateman CS 164 Lecture 12 27

A Fancier Symbol Table

• Find _typename(x)
find_symbol(x,kind=‘type)

• Find_varname(x) find_symbol(x,kind=‘var)
• Find_funname(x) find_symbol(x,kind=‘fun)
• Rebinding make_ST_entry(x,kind=type)

These turn out to be trivial Lisp programs; if
assoc returns the wrong kind of entry, keep
looking.

Prof. Fateman CS 164 Lecture 12 28

Function (method) Definitions

• Method names can be used in the MJ text of a
program before being defined. (mutually recursive,
even)

• So we can’t check use-definition agreement using a
sequential stack-based symbol table
– or even in one pass

• Solution
– Pass 1: Gather all function names, arg-types, return types
– Pass 2: Do the checking of all the bodies

• Semantic analysis can require multiple passes
– Usual design requires 1, maybe 2.
– Type inference, badly designed, can use many.. (Ada)

Prof. Fateman CS 164 Lecture 12 29

Why extra passes?

• Consider a language in which a:=b+c means, if
a has type double-float, b and c are single-
float: convert b to double, c to double, add
double and store in a.

• If we parse bottom up, we don’t know what
the type is of a until “too late”

• synthesized vs. inherited attributes.

Prof. Fateman CS 164 Lecture 12 30

Not everyone likes a stack

• Assoc takes time O(n) for n items on the
stack. What if you have thousands of
identifiers? (AWA page 110)?

Prof. Fateman CS 164 Lecture 12 31

Thousands of identifiers?

• Well, how likely is THAT? It happens in C code
with piles of #include foo.h, .. But it doesn’t
happen in lisp; a cost of checking (pro/con)..

• A hash-table typically is used then: every
time one enters/leaves the scope of bindings,
they are inserted/deleted from the hash-
table, and the OLD bindings if any, are
restored.

Prof. Fateman CS 164 Lecture 12 32

Still maybe you are in a hurry

• What’s your hurry?
– If you are using this as a RUN TIME mechanism for

finding the values of variables, a stack implemented
as a list is not good; a stack as an array may be ok.

– E.g. X:=X+1 becomes:
• Find X on the stack O(n) or O(1) or memoized
• Change its value
• What if X is very far away on the stack??
• Advantage: changing scope is trivial push/pop.

• Sometimes O(n) used in dynamic scope languages, called
deep binding: cheap binding, expensive access.

Prof. Fateman CS 164 Lecture 12 33

Not everyone likes a stack (continued)

• Another runtime stack tactic
• You can always find the value for anything named X in a

fixed location in a hash table or array, say location 1234
• Changing its value is easy.
• When a “new X” is needed in some scope, store the

contents of 1234, or the “old X” on a stack. Initialize
location 1234 to the value for the new X. Any reference to
the new X goes to 1234. When the process exits the
scope of new X, pop the value of the old X off the stack
and put it in 1234.

• This is called shallow binding, used in dynamic scope
languages (old lisp, also “special” variables in CL). Cheap
access, expensive binding.

Prof. Fateman CS 164 Lecture 12 34

Block structured symbol tables

• Here’s another mechanism
• Put all variables/bindings at a given lexical level L in an array,

vector or hashtable
• Make a collection of pointers to each lexical level L, L-1 …1,

0=global.
Now to look up the value/type/etc of X, look for X in lexical level

L, then L-1, until you find X or give up… So you look in L hash-
tables, rather than searching item by item through the stack.

When you leave a scope, you abandon the whole level L hashtable.
If you can actually pre-calculate that X is the 4th item in level 3

then you may be able to access its value in one indexed memory
access, e.g. if you have level 1, 2, 3’s… address in a register. This
is the usual situation for lexically scoped languages. For
historical reasons this mechanism is sometimes called a DISPLAY

Prof. Fateman CS 164 Lecture 12 35

Summary: basic static semantic analysis

• Information generated by a pass over the
AST can be used
– For type analysis
– Checking other details of proper usage

• Must be coordinated with analysis of scope
keep track of name – attribute
correspondences

	Overview of Semantic Analysis�
	Outline
	The Compiler So Far
	Why a Separate Semantic Analysis?
	Why not CF?
	What Does Semantic Analysis Do?
	What Does Semantic Analysis Do?
	Scope
	What’s Wrong?
	Scope (Cont.)
	Static vs. Dynamic Scope
	Static Scoping Example (in Common Lisp)
	Static vs Dynamic Scoping Example in CL
	Functional Scoping Example in CL
	Scope in MiniJava
	“Scope” in CL is more complex
	“Scope” in C is almost unused
	Implementing the Most-Closely Nested Rule
	Implementing . . . (Cont.)
	Symbol Tables
	Runtime analogs of Symbol Tables can hold values.
	A Simple Symbol Table Implementation, C-style
	A Simple Lisp Symbol Table Implementation
	A Simple Lisp Symbol Table Implementation
	A Simple Lisp Symbol Table Implementation
	Limitations
	A Fancier Symbol Table
	Function (method) Definitions
	Why extra passes?
	Not everyone likes a stack
	Thousands of identifiers?
	Still maybe you are in a hurry
	Not everyone likes a stack (continued)
	Block structured symbol tables
	Summary: basic static semantic analysis

