
Prof. Fateman CS 164 Lecture 11 1

Syntax Simple Semantics

Lecture 11

Prof. Fateman CS 164 Lecture 11 2

What do we do while parsing

• What semantic actions are plausible?
– Mere recognition
– Immediate execution
– Generate Abstract Parse Trees

Prof. Fateman CS 164 Lecture 11 3

What does a rule E → E+T mean? (I)

• E1 → E0+T could mean “I will happily exchange
my E, +, and T for an E, if it means I can
determine if this input string is a sentence.”

• (E → E + T #’(lambda(E P T) ‘t))
• in this model the result of parsing 3+4 is

“true”

Prof. Fateman CS 164 Lecture 11 4

What does a rule E → E+T mean? (II)

• E1 → E0+T could mean “E1 means: the result of
taking whatever E0 means, and whatever T
means, and adding them together.”

• (E → E + T #’(lambda(E P T)(+ E T)))

• In this model, the result of parsing 3 + 4 is 7

Prof. Fateman CS 164 Lecture 11 5

What does a rule E → E+T mean? (III)

• E1 → E0+T could mean “whatever E0 means,
and whatever T means, make a tree of them
with + at the root.”

• (E → E + T #’(lambda(E P T)(list ‘+ E T)))
• In this model, parsing 3 + 4 produces (+ 3 4).
• [this happens also to be a lisp program, but

you could imagine some other tree structure,
e.g. Tree{root=“plus”, left=Tree{root= “3”
left=nil…, right=Tree{ ….} }]

Prof. Fateman CS 164 Lecture 11 6

What else might a rule mean?

• Arbitrary other semantics could be attached
to a rule, to be applied when reducing E+T to
E.

• For example
– If E0 and T are of type integer then E1 must also

be of type integer
• A rule typedeclare → type id might set up

some information in memory to help make
sense of a program’s variables. In principle
might not be in the tree.

Prof. Fateman CS 164 Lecture 11 7

What else might a rule mean?

• We could have a grammar with augments that
formatted mathematical formulas...
– Fraction → Num / Denom
#’(lambda (N s D)
(makevertpile N

(hline (max (width N)(width D))
D))

Prof. Fateman CS 164 Lecture 11 8

Building a parse tree

S → E $

E → T EP

EP → ADDOP T EP

EP →

ADDOP → + | -

T → F TP

TP → MULOP F TP

TP →

MULOP → * | /

F → id | num | (E)

Sample = id + id + num * (num / num) $

Prof. Fateman CS 164 Lecture 11 9

Building a parse tree

;; (id + id + num * |(| num / num |)| $
(S (E (T (F id) (TP))

(EP (addop +) (T (F id) (TP))
(EP (addop +)

(T (F num)
(TP (mulop *)

(T (F |(|
(E (T (F num) (TP (mulop

/) (T (F num) (TP)) (TP)))
(EP))

|)|)
(TP))

(TP)))
(EP))))

$)

Prof. Fateman CS 164 Lecture 11 10

Building a more useful tree

;; (id + id + num * |(| num / num |)| $
(+ id id (* num (/ num num))) ; recdec315s
… just the terminals!!! instead of the clumsy previous tree

(S (E (T (F id) (TP))
(EP (addop +) (T (F id) (TP))

(EP (addop +)
…. ;; all these pointless reductions in tree

Prof. Fateman CS 164 Lecture 11 11

What kind of tree should we build for a
MiniJava program?

• Cheap trick: a tree that is an equivalent Lisp program.
• Cheap trick: a tree that if printed in infix order is a C

program that could be compiled and run.
• Really cheap trick: a Java program ☺
• More typical treatment:

– A symbol table structure listing all the types, variables,
functions (in all their different scopes)

– With all the function bodies or other executable components
defined as trees

– Use above data to do type checking.

Prof. Fateman CS 164 Lecture 11 12

Abstract Syntax Tree Example. Here is a
MJ program (BinarySearch.java)

class BinarySearch{
public static void main(String[] a){

System.out.println(new BS().Start(20));
}

}
// This class contains an array of integers and
// methods to initialize, print and search the array
// using Binary Search

class BS{
int[] number ;
int size ;

// Invoke methods to initialize, print and search
// for elements on the array
public int Start(int sz){

int aux01 ;
int aux02 ;

Prof. Fateman CS 164 Lecture 11 13

Abstract Syntax Tree Example. Here is a
MJ parser OUTPUT (BinarySearch.java)

(Program ;; this has line numbers only, output of simple-
;;lex, simple-parse

(MainClass (id BinarySearch 1) (id a 2)
(Print
(Call (NewObject (id BS 3)) (id Start 3) (ExpList
(IntegerLiteral 20)))))

(ClassDecls
(ClassDecl (id BS 10) (extends nil)
(VarDecls (VarDecl IntArrayType (id number 11))
(VarDecl IntType (id size 12)))
(MethodDecls
(MethodDecl IntType (id Start 16) (Formals (Formal

IntType (id sz 16)))
(VarDecls (VarDecl IntType (id aux01 17)) ……

Prof. Fateman CS 164 Lecture 11 14

This is really rather clumsy to look at

• But at least we can look at it without writing
another program (not like Java).

• We have removed line/column markers in many
places, but left some in there so that we still
can identify some errors by location.

• The next pass can be like our CS61a analyzing
meta-circular evaluator (remember that ☺?)

Prof. Fateman CS 164 Lecture 11 15

Just as a preview

• If we see a binary arithmetic operator, we can hope to
look up the declared types of the arguments to it (if
ids). Or the computed types of the arguments to it (if
expressions).

• For more ambitious languages, a<b is legal when a
comparison is valid (e.g. strings, floats, ints and floats,
single and double). Or a+b makes sense when one or
both are strings.

• The primary issues:
– knowing types of objects (in scopes..)
– Knowing what’s legal to do with the objects.

	Syntax Simple Semantics
	What do we do while parsing
	What does a rule E ! E+T mean? (I)
	What does a rule E ! E+T mean? (II)
	What does a rule E ! E+T mean? (III)
	What else might a rule mean?
	What else might a rule mean?
	Building a parse tree
	Building a parse tree
	Building a more useful tree
	What kind of tree should we build for a MiniJava program?
	Abstract Syntax Tree Example. Here is a MJ program (BinarySearch.java)
	Abstract Syntax Tree Example. Here is a MJ parser OUTPUT (BinarySearch.java)
	This is really rather clumsy to look at
	Just as a preview

