
Prof. Fateman CS 164 Lecture 10 1

LR Parsing, LALR Parser Generators

Lecture 10

Prof. Fateman CS 164 Lecture 10 2

Outline

• Review of bottom-up parsing

• Computing the parsing DFA

• Using parser generators

Prof. Fateman CS 164 Lecture 10 3

Bottom-up Parsing (Review)

• A bottom-up parser rewrites the input string
to the start symbol

• The state of the parser is described as
α I γ

– α is a stack of terminals and non-terminals
– γ is the string of terminals not yet examined

• Initially: I x1x2 . . . xn

Prof. Fateman CS 164 Lecture 10 4

The Shift and Reduce Actions (Review)

• Recall the CFG: E → int | E + (E)
• A bottom-up parser uses two kinds of actions:

• Shift pushes a terminal from input on the stack
E + (I int) ⇒ E + (int I)

• Reduce pops 0 or more symbols off the stack
(the rule’s rhs) and pushes a non-terminal on
the stack (the rule’s lhs)

E + (E + (E) I) ⇒ E +(E I)

Prof. Fateman CS 164 Lecture 10 5

Key Issue: When to Shift or Reduce?

• Idea: use a finite automaton (DFA) to decide
when to shift or reduce
– The input is the stack
– The language consists of terminals and non-terminals

• We run the DFA on the stack and we examine
the resulting state X and the token tok after I
– If X has a transition labeled tok then shift
– If X is labeled with “A → β on tok” then reduce

LR(1) Parsing. An Example
int

E → int
on $, +

accept
on $

E → E + (E)
on $, +

+
E

10

E → int
on), +

E → E + (E)
on), +

(

int

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

E

)

I int + (int) + (int)$ shift
int I + (int) + (int)$ E → int
E I + (int) + (int)$ shift(x3)
E + (int I) + (int)$ E → int
E + (E I) + (int)$ shift
E + (E) I + (int)$ E → E+(E)
E I + (int)$ shift (x3)
E + (int I)$ E → int
E + (E I)$ shift
E + (E) I $ E → E+(E)
E I $ accept

int

Prof. Fateman CS 164 Lecture 10 7

Representing the DFA

• Parsers represent the DFA as a 2D table
– Recall table-driven lexical analysis

• Lines correspond to DFA states
• Columns correspond to terminals and non-

terminals
• Typically columns are split into:

– Those for terminals: the action table
– Those for non-terminals: the goto table

Prof. Fateman CS 164 Lecture 10 8

Representing the DFA. Example

• The table for a fragment of our DFA:
int + () $ E

…
3 s4
4 s5 g6
5 rE→ int rE→ int
6 s8 s7
7 rE→ E+(E) rE→ E+(E)
…

E → int
on), +

E → E + (E)
on $, +

int
3

(
4

56

7

)

E

sk is shift and goto state k
rX → α is reduce
gk is goto state k,

Prof. Fateman CS 164 Lecture 10 9

The LR Parsing Algorithm

• After a shift or reduce action we rerun the
DFA on the entire stack
– This is wasteful, since most of the work is repeated

• Remember for each stack element on which
state it brings the DFA; use extra memory.

• LR parser maintains a stack
〈 sym1, state1 〉 . . . 〈 symn, staten 〉

statek is the final state of the DFA on sym1 … symk

Prof. Fateman CS 164 Lecture 10 10

The LR Parsing Algorithm

Let I = w$ be initial input
Let j = 0
Let DFA state 0 be the start state
Let stack = 〈 dummy, 0 〉

repeat
case action[top_state(stack), I[j]] of

shift k: push 〈 I[j++], k 〉
reduce X → A:

pop |A| pairs,
push 〈X, Goto[top_state(stack), X]〉

accept: halt normally
error: halt and report error

Prof. Fateman CS 164 Lecture 10 11

Key Issue: How is the DFA Constructed?

• The stack describes the context of the parse
– What non-terminal we are looking for
– What production rhs we are looking for
– What we have seen so far from the rhs

• Each DFA state describes several such
contexts
– E.g., when we are looking for non-terminal E, we

might be looking either for an int or a E + (E) rhs

Prof. Fateman CS 164 Lecture 10 12

LR(1) Items

• An LR(1) item is a pair:
X → α•β, a

– X → αβ is a production
– a is a terminal (the lookahead terminal)
– LR(1) means 1 lookahead terminal

• [X → α•β, a] describes a context of the parser
– We are trying to find an X followed by an a, and
– We have (at least) α already on top of the stack
– Thus we need to see next a prefix derived from βa

Prof. Fateman CS 164 Lecture 10 13

Note

• The symbol I was used before to separate the
stack from the rest of input
– α I γ, where α is the stack and γ is the remaining

string of terminals
• In items • is used to mark a prefix of a

production rhs:
X → α•β, a

– Here β might contain terminals as well
• In both case the stack is on the left

Prof. Fateman CS 164 Lecture 10 14

Convention

• We add to our grammar a fresh new start
symbol S and a production S → E
– Where E is the old start symbol

• The initial parsing context contains:
S → •E, $

– Trying to find an S as a string derived from E$
– The stack is empty

Prof. Fateman CS 164 Lecture 10 15

LR(1) Items (Cont.)

• In context containing
E → E + • (E), +

– If (follows then we can perform a shift to context
containing

E → E + (• E), +
• In context containing

E → E + (E) •, +
– We can perform a reduction with E → E + (E)
– But only if a + follows

Prof. Fateman CS 164 Lecture 10 16

LR(1) Items (Cont.)

• Consider the item
E → E + (• E) , +

• We expect a string derived from E) +
• There are two productions for E

E → int and E → E + (E)
• We describe this by extending the context

with two more items:
E → • int,)
E → • E + (E) ,)

Prof. Fateman CS 164 Lecture 10 17

The Closure Operation

• Extending the context with items is called the
closure operation.

Closure(Items) =
repeat

for each [X → α•Yβ, a] in Items
for each production Y → γ

for each b ∈ First(βa)
add [Y → •γ, b] to Items

until Items is unchanged

Prof. Fateman CS 164 Lecture 10 18

Constructing the Parsing DFA (1)

• Construct the start context: Closure({S → •E, $})

S → •E, $
E → •E+(E), $
E → •int, $
E → •E+(E), +
E → •int, +

S → •E, $
E → •E+(E), $/+
E → •int, $/+

• We abbreviate as:

Prof. Fateman CS 164 Lecture 10 19

Constructing the Parsing DFA (2)

• A DFA state is a closed set of LR(1) items

• The start state contains [S → •E, $]

• A state that contains [X → α•, b] is labeled
with “reduce with X → α on b”

• And now the transitions …

Prof. Fateman CS 164 Lecture 10 20

The DFA Transitions

• A state “State” that contains [X → α•yβ, b]
has a transition labeled y to a state that the
items “Transition(State, y)”
– y can be a terminal or a non-terminal

Transition(State, y)
Items ← ∅
for each [X → α•yβ, b] ∈ State

add [X → αy•β, b] to Items
return Closure(Items)

Prof. Fateman CS 164 Lecture 10 21

Constructing the Parsing DFA. Example.

E → E+• (E), $/+

E → int
on $, +

accept
on $

E → E+(•E), $/+
E → •E+(E),)/+
E → •int,)/+

E → int•,)/+ E → int
on), +

E → E+(E•), $/+
E → E•+(E),)/+

and so on…

S → •E, $
E → •E+(E), $/+
E → •int, $/+

0

3

4

56

E → int•, $/+
1

S → E•, $
E → E•+(E), $/+

2

int

E +
(

E

int

Prof. Fateman CS 164 Lecture 10 22

LR Parsing Tables. Notes

• Parsing tables (i.e. the DFA) can be
constructed automatically for a CFG

• Why study this at all in CS164? We still need
to understand the construction to work with
parser generators
– E.g., they report errors in terms of sets of items

• What kind of errors can we expect?

Prof. Fateman CS 164 Lecture 10 23

Shift/Reduce Conflicts

• If a DFA state contains both
[X → α•aβ, b] and [Y → γ•, a]

• Then on input “a” we could either
– Shift into state [X → αa•β, b], or
– Reduce with Y → γ

• This is called a shift-reduce conflict

Prof. Fateman CS 164 Lecture 10 24

Shift/Reduce Conflicts

• They are a typical symptom if there is an
ambiguity in the grammar

• Classic example: the dangling else
S → if E then S | if E then S else S | OTHER

• Will have DFA state containing
[S → if E then S•, else]
[S → if E then S• else S, x]

• If else follows then we can shift or reduce
• Default (bison, CUP, JLALR, etc.) is to shift

– Default behavior is right in this case

Prof. Fateman CS 164 Lecture 10 25

More Shift/Reduce Conflicts

• Consider the ambiguous grammar
E → E + E | E * E | int

• We will have the states containing
[E → E * • E, +] [E → E * E•, +]
[E → • E + E, +] ⇒E [E → E • + E, +]

… …
• Again we have a shift/reduce on input +

– We need to reduce (* binds more tightly than +)
– Solution: somehow impose the precedence of * and

+

Prof. Fateman CS 164 Lecture 10 26

More Shift/Reduce Conflicts

Some parser generators (YACC, BISON)
provide precedence declarations.
– Precedence left PLUS,

– Precedence left TIMES

– Precedence right EXP

• Bison, YACC
– Declare precedence and associativity:

%left +

%left *

Prof. Fateman CS 164 Lecture 10 27

More Shift/Reduce Conflicts

Our LALR generator doesn’t do this. Instead, we
“Stratify” the grammar. (Less explanation!)

E → E + E | E * E | int ;; original
New
E → E + E1 | E1 ;; E1+E would be right associative
E1 → E1 * int | int
(Many “layers” may be necessary for elaborate

languages. (13 in C++, and some operators
appear at several levels, e.g. “(“. Some
operators are right-associative like =, +=; most
are left associative.)

Prof. Fateman CS 164 Lecture 10 28

Reduce/Reduce Conflicts

• If a DFA state contains both
[X → α•, a] and [Y → β•, a]

– Then on input “a” we don’t know which
production to reduce

• This is called a reduce/reduce conflict

Prof. Fateman CS 164 Lecture 10 29

Reduce/Reduce Conflicts

• Usually due to gross ambiguity in the grammar
• Example: a sequence of identifiers

S → ε | id | id S

• There are two parse trees for the string id
S → id
S → id S → id

• How does this confuse the parser?

Prof. Fateman CS 164 Lecture 10 30

More on Reduce/Reduce Conflicts

• Consider the states [S → id •, $]
[S’ → • S, $] [S → id • S, $]
[S → •, $] ⇒id [S → •, $]
[S → • id, $] [S → • id, $]
[S → • id S, $] [S → • id S, $]

• Reduce/reduce conflict on input $
S’ → S → id
S’ → S → id S → id

• Better rewrite the grammar: S → ε | id S

Prof. Fateman CS 164 Lecture 10 31

Using Parser Generators

• Parser generators construct the parsing DFA
given a CFG
– Use precedence declarations and default

conventions to resolve conflicts
– The parser algorithm is the same for all grammars

(and is provided as a library function)
• But most parser generators do not construct

the DFA as described before
– Because the LR(1) parsing DFA has 1000s of states

even for a simple language

Prof. Fateman CS 164 Lecture 10 32

LR(1) Parsing Tables are Big

• But many states are similar, e.g.

and

• Idea: merge the DFA states whose items
differ only in the lookahead tokens
– We say that such states have the same core

• We obtain

E → int
on $, +E → int•, $/+ E → int•,)/+ E → int

on), +

51

E → int
on $, +,)E → int•, $/+/)

1’

Prof. Fateman CS 164 Lecture 10 33

The Core of a Set of LR Items

• Definition: The core of a set of LR items is
the set of first components
– Without the lookahead terminals

• Example: the core of
{ [X → α•β, b], [Y → γ•δ, d]}

is
{X → α•β, Y → γ•δ}

Prof. Fateman CS 164 Lecture 10 34

LALR States

• Consider for example the LR(1) states
{[X → α•, a], [Y → β•, c]}
{[X → α•, b], [Y → β•, d]}

• They have the same core and can be merged
and the merged state contains:

{[X → α•, a/b], [Y → β•, c/d]}
• These are called LALR(1) states

– Stands for LookAhead LR
– Typically 10 times fewer LALR(1) states than LR(1)

Prof. Fateman CS 164 Lecture 10 35

A LALR(1) DFA

• Repeat until all states have distinct core
– Choose two distinct states with same core
– Merge the states by creating a new one with the

union of all the items
– Point edges from predecessors to new state
– New state points to all the previous successors

A CB

ED F

A
BE

D

C

F

Conversion LR(1) to LALR(1). Example.
int

E → int
on $, +

E → int
on), +

E → E + (E)
on $, +

+
E

10 E → E + (E)
on), +

(

int

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

E

)

int

accept
on $

int
E → int
on $, +,)

E → E + (E)
on $, +,)

(

E
int

0 1,5

2 3,8 4,9

6,107,11

+

+

)

E

accept
on $

Prof. Fateman CS 164 Lecture 10 37

The LALR Parser Can Have Conflicts

• Consider for example the LR(1) states
{[X → α•, a], [Y → β•, b]}
{[X → α•, b], [Y → β•, a]}

• And the merged LALR(1) state
{[X → α•, a/b], [Y → β•, a/b]}

• Has a new reduce-reduce conflict

• In practice such cases are rare

Prof. Fateman CS 164 Lecture 10 38

LALR vs. LR Parsing

• LALR languages are not “natural”
– They are an efficiency hack on LR languages

• You may see claims that any reasonable programming
language has a LALR(1) grammar, {Arguably this is
done by defining languages without an LALR(1)
grammar as unreasonable ☺ }.

• In any case, LALR(1) has become a standard for
programming languages and for parser generators, in
spite of its apparent complexity.

Prof. Fateman CS 164 Lecture 10 39

A Hierarchy of Grammar Classes

From Andrew Appel,
“Modern Compiler
Implementation in Java”

Prof. Fateman CS 164 Lecture 10 40

Notes on Parsing

• Parsing
– A solid foundation: context-free grammars
– A simple parser: LL(1)
– A more powerful parser: LR(1)
– An efficiency hack: LALR(1)
– LALR(1) parser generators

• Next time we move on to semantic analysis

Prof. Fateman CS 164 Lecture 10 41

Notes on Lisp LALR generator

• lalr.cl is source code; lalr.doc additional
documentation.

• A complete parse table can be viewed by
• (setf p (makeparser G lexforms nil))
• (Print-Table stateList)
• (eval p) ;; create the parser named LALR-

parser

Prof. Fateman CS 164 Lecture 10 42

Sample input for lalr generator

(defparameter G2 '(
(exp --> exp + term #'(lambda(exp n term)(list '+ exp term)))
(exp --> exp - term #'(lambda(exp n term)(list '- exp term)))
(exp --> term #'(lambda(term) term))
(term --> term * factor #'(lambda(term n fac)(list '* term fac)))
(term --> factor #'(lambda(factor) factor))
(factor --> id #'(lambda(id) (const-value id)))
(factor --> |(| exp |)| #'(lambda(p1 exp p2) exp))
(factor --> iconst #'(lambda(iconst) (const-value iconst)))
(factor --> bconst #'(lambda(bconst) (const-value bconst)))
(factor --> fconst #'(lambda(fconst) (const-value fconst)))))

(defparameter lexforms ‘(+ - * |(| |)| id iconst bconst fconst))

(make-parser G2 lexforms nil)

Prof. Fateman CS 164 Lecture 10 43

Sample table-output for lisp lalr generator

STATE-0:
$Start --> . exp, nil

On fconst shift STATE-14
On bconst shift STATE-13
On iconst shift STATE-12
On (shift STATE-7
On id shift STATE-6
On factor shift STATE-11
On term shift STATE-16
On exp shift STATE-1

STATE-1:
$Start --> exp ., nil
exp --> exp . + term, + - nil
exp --> exp . - term, + - nil

On + shift STATE-9
On - shift STATE-2
On nil reduce exp --> $Start … up to state 16

Prof. Fateman CS 164 Lecture 10 44

Each state is embodied in a subroutine

Defined locally in one main program via “labels”
Using local subroutines that shift, reduce, peek at next input
Main parser is called by (lalr-parser #’next-input #’error)

Any number of parsers can be set up in the same environment, though
usually only one is tested… I just try out some input

(parse-fl ‘((id a) + (id b)))

;; if there is a problem, edit the grammar, say G2, then

(remake G2)

(remakec G2) ;; COMPILES lalr-parser. Parser runs 20X faster or so.

Prof. Fateman CS 164 Lecture 10 45

Sample output program for lalr generator

(defun lalr-parser (next-input parse-error)
(let ((cat-la 'nil) (val-la 'nil) (val-stack 'nil) (state-stack 'nil))

(labels ((input-peek nil …;;these 3 subprograms are standard
(shift-from (name) …
(reduce-cat (name cat ndaughters action)…
(STATE-0 nil ;; generated specifically from grammar

(case (input-peek)
(fconst (shift-from #'STATE-0) (STATE-14))
…
(exp (shift-from #'STATE-0) (STATE-1))
(otherwise (funcall parse-error))))

(STATE-1 nil
(case (input-peek)

(+ (shift-from #'STATE-1) (STATE-9))
(- (shift-from #'STATE-1) (STATE-2))
((nil) (reduce-cat #'STATE-1 '$Start 1 nil))
(otherwise (funcall parse-error))))

…;etc etc

Prof. Fateman CS 164 Lecture 10 46

Supplement to LR Parsing

Strange Reduce/Reduce Conflicts
Due to LALR Conversion

Prof. Fateman CS 164 Lecture 10 47

Strange Reduce/Reduce Conflicts

• Consider the grammar
S → P R , NL → N | N , NL
P → T | NL : T R → T | N : T
N → id T → id

• P - parameters specification
• R - result specification
• N - a parameter or result name
• T - a type name
• NL - a list of names

Prof. Fateman CS 164 Lecture 10 48

Strange Reduce/Reduce Conflicts

• In P an id is a
– N when followed by , or :
– T when followed by id

• In R an id is a
– N when followed by :
– T when followed by ,

• This is an LR(1) grammar.
• But it is not LALR(1). Why?

– For obscure reasons

Prof. Fateman CS 164 Lecture 10 49

A Few LR(1) States

P → • T id

P → • NL : T id

NL → • N :

NL → • N , NL :

N → • id :

N → • id ,

T → • id id

1

R → • T ,

R → • N : T ,

T → • id ,

N → • id :

2

T → id • id

N → id • :

N → id • ,
id

3

T → id • ,

N → id • :
id 4

T → id • id/,

N → id • :/,
LALR merge

LALR reduce/reduce
conflict on “,”

Prof. Fateman CS 164 Lecture 10 50

What Happened?

• Two distinct states were confused because
they have the same core

• Fix: add dummy productions to distinguish the
two confused states

• E.g., add
R → id bogus

– bogus is a terminal not used by the lexer
– This production will never be used during parsing
– But it distinguishes R from P

Prof. Fateman CS 164 Lecture 10 51

A Few LR(1) States After Fix

P → • T id

P → • NL : T id

NL → • N :

NL → • N , NL :

N → • id :

N → • id ,

T → • id id

R → . T ,

R → . N : T ,

R → . id bogus ,

T → . id ,

N → . id :

T → id • id

N → id • :

N → id • ,

T → id • ,

N → id • :

R → id • bogus ,

id

id

1

2

3

4

Different cores ⇒ no LALR merging

	LR Parsing, LALR Parser Generators
	Outline
	Bottom-up Parsing (Review)
	The Shift and Reduce Actions (Review)
	Key Issue: When to Shift or Reduce?
	LR(1) Parsing. An Example
	Representing the DFA
	Representing the DFA. Example
	The LR Parsing Algorithm
	The LR Parsing Algorithm
	Key Issue: How is the DFA Constructed?
	LR(1) Items
	Note
	Convention
	LR(1) Items (Cont.)
	LR(1) Items (Cont.)
	The Closure Operation
	Constructing the Parsing DFA (1)
	Constructing the Parsing DFA (2)
	The DFA Transitions
	Constructing the Parsing DFA. Example.
	LR Parsing Tables. Notes
	Shift/Reduce Conflicts
	Shift/Reduce Conflicts
	More Shift/Reduce Conflicts
	More Shift/Reduce Conflicts
	More Shift/Reduce Conflicts
	Reduce/Reduce Conflicts
	Reduce/Reduce Conflicts
	More on Reduce/Reduce Conflicts
	Using Parser Generators
	LR(1) Parsing Tables are Big
	The Core of a Set of LR Items
	LALR States
	A LALR(1) DFA
	Conversion LR(1) to LALR(1). Example.
	The LALR Parser Can Have Conflicts
	LALR vs. LR Parsing
	A Hierarchy of Grammar Classes
	Notes on Parsing
	Notes on Lisp LALR generator
	Sample input for lalr generator
	Sample table-output for lisp lalr generator
	Each state is embodied in a subroutine
	Sample output program for lalr generator
	Supplement to LR Parsing�
	Strange Reduce/Reduce Conflicts
	Strange Reduce/Reduce Conflicts
	A Few LR(1) States
	What Happened?
	A Few LR(1) States After Fix

