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LR Parsing, LALR Parser Generators

Lecture 10
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Outline

• Review of bottom-up parsing

• Computing the parsing DFA

• Using parser generators
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Bottom-up Parsing (Review)

• A bottom-up parser rewrites the input string 
to the start symbol 

• The state of the parser is described as 
α I γ

– α is a stack of terminals and non-terminals
– γ is the string of terminals not yet examined

• Initially: I x1x2 . . . xn
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The Shift and Reduce Actions (Review)

• Recall the CFG: E → int | E + (E)
• A bottom-up parser uses two kinds of actions:

• Shift pushes a terminal from input on the stack
E + (I int )  ⇒ E + (int I )

• Reduce pops 0 or more symbols off the stack 
(the rule’s rhs) and pushes a non-terminal on 
the stack (the rule’s lhs)

E + (E + ( E ) I )  ⇒ E +(E I )
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Key Issue: When to Shift or Reduce?

• Idea: use a finite automaton (DFA) to decide 
when to shift or reduce
– The input is the stack
– The language consists of terminals and non-terminals

• We run the DFA on the stack and we examine 
the resulting state X and the token tok after I
– If X has a transition labeled tok then shift
– If X is labeled with “A → β on tok” then reduce



LR(1) Parsing. An Example 
int

E → int
on $, +

accept 
on $

E → E + (E)
on $, +

+
E

10

E → int
on ), +

E → E + (E)
on ), +

(

int

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

E

)

I int + (int) + (int)$   shift
int I + (int) + (int)$   E → int
E I + (int) + (int)$    shift(x3)
E + (int I ) + (int)$    E → int
E + (E I ) + (int)$    shift
E + (E) I + (int)$ E → E+(E)
E I + (int)$ shift (x3)
E + (int I )$            E → int
E + (E I )$              shift
E + (E) I $              E → E+(E)
E I $                      accept

int
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Representing the DFA

• Parsers represent the DFA as a 2D table
– Recall table-driven lexical analysis

• Lines correspond to DFA states
• Columns correspond to terminals and non-

terminals
• Typically columns are split into:

– Those for terminals:  the action table
– Those for non-terminals: the goto table
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Representing the DFA. Example

• The table for a fragment of our DFA:
int + ( ) $ E

…
3 s4
4 s5 g6
5 rE→ int rE→ int
6 s8 s7
7 rE→ E+(E) rE→ E+(E)
…

E → int
on ), +

E → E + (E)
on $, +

int
3

(
4

56

7

)

E

sk is shift and goto state k
rX → α is reduce
gk is goto state k,
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The LR Parsing Algorithm

• After a shift or reduce action we rerun the 
DFA on the entire stack
– This is wasteful, since most of the work is repeated

• Remember for each stack element on which 
state it brings the DFA; use extra memory.

• LR parser maintains a stack
〈 sym1, state1 〉 . . . 〈 symn, staten 〉

statek is the final state of the DFA on sym1 … symk
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The LR Parsing Algorithm

Let I = w$ be initial input
Let j = 0
Let DFA state 0 be the start state
Let stack = 〈 dummy, 0 〉

repeat
case action[top_state(stack), I[j]] of

shift k:  push 〈 I[j++], k 〉
reduce X → A: 

pop |A| pairs, 
push 〈X, Goto[top_state(stack), X]〉

accept: halt normally
error: halt and report error
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Key Issue: How is the DFA Constructed?

• The stack describes the context of the parse
– What non-terminal we are looking for
– What production rhs we are looking for
– What we have seen so far from the rhs

• Each DFA state describes several such 
contexts
– E.g., when we are looking for non-terminal E, we 

might be looking either for an int or a E + (E) rhs
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LR(1) Items

• An LR(1) item is a pair:
X → α•β, a

– X → αβ is a production
– a is a terminal (the lookahead terminal)
– LR(1) means 1 lookahead terminal

• [X → α•β, a] describes a context of the parser  
– We are trying to find an X followed by an a, and 
– We have  (at least) α already on top of the stack
– Thus we need to see next a prefix derived from βa
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Note

• The symbol I was used before to separate the 
stack from the rest of input
– α I γ, where α is the stack and γ is the remaining 

string of terminals
• In items • is used to mark a prefix of a 

production rhs:
X → α•β, a

– Here β might contain terminals as well
• In both case the stack is on the left
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Convention

• We add to our grammar a fresh new start 
symbol S and a production S → E
– Where E is the old start symbol

• The initial parsing context contains:
S → •E, $

– Trying to find an S as a string derived from E$
– The stack is empty
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LR(1) Items (Cont.)

• In context containing
E → E + • ( E ), +

– If ( follows then we can perform a shift to context 
containing

E → E + (• E ), +
• In context containing

E → E + ( E ) •, +
– We can perform a reduction with E → E + ( E )
– But only if a + follows
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LR(1) Items (Cont.)

• Consider the item
E → E + (• E ) , +

• We expect a string derived from E ) +
• There are two productions for E

E → int and  E → E + ( E)
• We describe this by extending the context  

with two more items:
E → • int, )
E → • E + ( E ) , )
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The Closure Operation

• Extending the context with items is called the 
closure operation.

Closure(Items) =
repeat

for each [X → α•Yβ, a] in Items
for each production Y → γ

for each b ∈ First(βa)
add [Y → •γ, b] to Items

until Items is unchanged
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Constructing the Parsing DFA (1) 

• Construct the start context: Closure({S → •E, $})

S → •E, $
E → •E+(E), $
E → •int, $
E → •E+(E), +
E → •int, +

S → •E, $
E → •E+(E), $/+
E → •int, $/+

• We abbreviate as:
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Constructing the Parsing DFA (2)

• A DFA state is a closed set of LR(1) items

• The start state contains [S → •E, $]

• A state that contains [X → α•, b] is labeled 
with “reduce with X → α on b”

• And now the transitions …
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The DFA Transitions

• A state “State” that contains [X → α•yβ, b]
has a transition labeled y to a state that the 
items “Transition(State, y)”
– y can be a terminal or a non-terminal

Transition(State, y) 
Items ← ∅
for each [X → α•yβ, b] ∈ State 

add [X → αy•β, b] to Items
return Closure(Items)
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Constructing the Parsing DFA. Example.

E → E+• (E), $/+

E → int
on $, +

accept 
on $

E → E+(•E), $/+
E → •E+(E), )/+
E → •int, )/+

E → int•, )/+ E → int
on ), +

E → E+(E•), $/+
E → E•+(E), )/+

and so on…

S → •E, $
E → •E+(E), $/+
E → •int, $/+

0

3

4

56

E → int•, $/+
1

S → E•, $
E → E•+(E), $/+

2

int

E +
(

E

int
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LR Parsing Tables. Notes

• Parsing tables (i.e. the DFA) can be 
constructed automatically for a CFG

• Why study this at all in CS164?  We still need 
to understand the construction to work with 
parser generators
– E.g., they report errors in terms of sets of items

• What kind of errors can we expect?
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Shift/Reduce Conflicts

• If a DFA state contains both
[X → α•aβ, b]  and  [Y → γ•, a]

• Then on input “a” we could either
– Shift into state [X → αa•β, b], or
– Reduce with Y → γ

• This is called a shift-reduce conflict
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Shift/Reduce Conflicts

• They are a typical symptom if there is an 
ambiguity in the grammar

• Classic example: the dangling else
S → if E then S  |  if E then S else S  |  OTHER

• Will have DFA state containing
[S → if E then S•,               else]
[S → if E then S• else S,    x]

• If else follows then we can shift or reduce
• Default (bison, CUP, JLALR, etc.) is to shift

– Default behavior is right in this case
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More Shift/Reduce Conflicts

• Consider the ambiguous grammar
E → E + E | E * E | int

• We will have the states containing
[E → E * • E,  +]            [E → E * E•,    +]
[E → • E + E,  +]    ⇒E [E → E • + E,  +]

… …
• Again we have a shift/reduce on input +

– We need to reduce (* binds more tightly than +)
– Solution: somehow impose the precedence of * and 

+
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More Shift/Reduce Conflicts

Some parser generators (YACC, BISON) 
provide precedence declarations. 
– Precedence left PLUS, 

– Precedence left TIMES

– Precedence right EXP

• Bison, YACC
– Declare precedence and associativity:            

%left +

%left *
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More Shift/Reduce Conflicts

Our LALR generator doesn’t do this. Instead, we 
“Stratify” the grammar. (Less explanation!)

E → E + E | E * E | int ;; original
New
E  → E + E1 | E1         ;; E1+E  would be right associative
E1 → E1 * int | int
(Many “layers” may be necessary for elaborate 

languages. (13 in C++, and some operators 
appear at several levels, e.g. “(“.  Some 
operators are right-associative like =, +=; most 
are left associative.)
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Reduce/Reduce Conflicts

• If a DFA state contains both
[X → α•, a] and [Y → β•, a]

– Then on input “a” we don’t know which 
production to reduce

• This is called a reduce/reduce conflict
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Reduce/Reduce Conflicts

• Usually due to gross ambiguity in the grammar
• Example: a sequence of identifiers

S → ε |  id  |  id S

• There are two parse trees for the string id
S → id
S → id S → id   

• How does this confuse the parser?



Prof. Fateman  CS 164  Lecture 10 30

More on Reduce/Reduce Conflicts

• Consider the states             [S → id •,     $]
[S’ → • S,     $]                    [S → id • S,  $]
[S → •,         $]        ⇒id [S → •,         $]
[S → • id,     $]                    [S → • id,     $]
[S → • id S,  $]                    [S → • id S,  $]

• Reduce/reduce conflict on input $
S’ → S → id
S’ → S → id S → id

• Better rewrite the grammar: S → ε | id S
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Using Parser Generators

• Parser generators construct the parsing DFA 
given a CFG
– Use precedence declarations and default 

conventions to resolve conflicts
– The parser algorithm is the same for all grammars 

(and is provided as a library function)
• But most parser generators do not construct 

the DFA as described before
– Because the LR(1) parsing DFA has 1000s of states 

even for a simple language
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LR(1) Parsing Tables are Big

• But many states are similar, e.g.

and

• Idea: merge the DFA states whose items 
differ only in the lookahead tokens
– We say that such states have the same core

• We obtain

E → int
on $, +E → int•, $/+ E → int•, )/+ E → int

on ), +

51

E → int
on $, +, )E → int•, $/+/)

1’
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The Core of a Set of LR Items

• Definition: The core of a set of LR items is 
the set of first components
– Without the lookahead terminals

• Example: the core of 
{ [X → α•β, b], [Y → γ•δ, d]}

is
{X → α•β,  Y → γ•δ}
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LALR States

• Consider for example the LR(1) states
{[X → α•, a], [Y → β•, c]}
{[X → α•, b], [Y → β•, d]}

• They have the same core and can be merged 
and the merged state contains:

{[X → α•, a/b], [Y → β•, c/d]}
• These are called LALR(1) states 

– Stands for LookAhead LR
– Typically 10 times fewer LALR(1) states than LR(1)
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A LALR(1) DFA

• Repeat until all states have distinct core
– Choose two distinct states with same core
– Merge the states by creating a new one with the 

union of all the items
– Point edges from predecessors to new state
– New state points to all the previous successors

A CB

ED F

A
BE

D

C

F



Conversion LR(1) to LALR(1). Example.
int

E → int
on $, +

E → int
on ), +

E → E + (E)
on $, +

+
E

10 E → E + (E)
on ), +

(

int

9

11

0 1

2 3 4

56

8

7

+ E

+

)

(

E

)

int

accept 
on $

int
E → int
on $, +, )

E → E + (E)
on $, +, )

(

E
int

0 1,5

2 3,8 4,9

6,107,11

+

+

)

E

accept 
on $
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The LALR Parser Can Have Conflicts

• Consider for example the LR(1) states
{[X → α•, a], [Y → β•, b]}
{[X → α•, b], [Y → β•, a]}

• And the merged LALR(1) state
{[X → α•, a/b], [Y → β•, a/b]}

• Has a new reduce-reduce conflict

• In practice such cases are rare
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LALR vs. LR Parsing

• LALR languages are not “natural”
– They are an efficiency hack on LR languages

• You may see claims that any reasonable programming 
language has a LALR(1) grammar, {Arguably this is 
done by defining languages without an LALR(1) 
grammar as unreasonable ☺ }.

• In any case, LALR(1) has become a standard for 
programming languages and for parser generators, in 
spite of its apparent complexity. 
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A Hierarchy of Grammar Classes

From Andrew Appel, 
“Modern Compiler 
Implementation in Java”
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Notes on Parsing

• Parsing
– A solid foundation: context-free grammars
– A simple parser: LL(1)
– A more powerful parser: LR(1)
– An efficiency hack: LALR(1)
– LALR(1) parser generators

• Next time we move on to semantic analysis
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Notes on Lisp LALR generator

• lalr.cl is source code; lalr.doc additional 
documentation.

• A complete parse table can be viewed by 
• (setf p (makeparser G lexforms nil))
• (Print-Table stateList)
• (eval p) ;; create the parser named LALR-

parser
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Sample input for lalr generator

(defparameter G2 '(
(exp --> exp + term      #'(lambda(exp n term)(list '+ exp term)))
(exp --> exp - term      #'(lambda(exp n term)(list '- exp term)))
(exp --> term            #'(lambda(term) term))
(term --> term * factor  #'(lambda(term n fac)(list '* term fac)))
(term --> factor         #'(lambda(factor) factor))
(factor --> id           #'(lambda(id) (const-value id)))
(factor --> |(| exp |)|  #'(lambda(p1 exp p2) exp))
(factor --> iconst #'(lambda(iconst) (const-value iconst)))
(factor --> bconst #'(lambda(bconst) (const-value bconst)))
(factor --> fconst #'(lambda(fconst) (const-value fconst)))))

(defparameter lexforms ‘( + - * |(| |)| id iconst bconst fconst))

(make-parser G2 lexforms nil)
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Sample table-output for lisp lalr generator

STATE-0:
$Start --> . exp, nil 

On fconst shift STATE-14
On bconst shift STATE-13
On iconst shift STATE-12
On ( shift STATE-7
On id shift STATE-6
On factor shift STATE-11
On term shift STATE-16
On exp shift STATE-1

STATE-1:
$Start --> exp ., nil 
exp --> exp . + term, + - nil 
exp --> exp . - term, + - nil 

On + shift STATE-9
On - shift STATE-2
On nil reduce exp --> $Start   … up to state 16
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Each state is embodied in a subroutine

Defined locally in one main program via “labels”
Using local subroutines that shift, reduce, peek at next input
Main parser is called by   (lalr-parser #’next-input #’error)

Any number of parsers can be set up in the same environment, though 
usually only one is tested… I just try out some input

(parse-fl ‘( (id a) + (id b)))

;; if there is a problem, edit the grammar, say G2, then

(remake G2)

(remakec G2) ;; COMPILES lalr-parser. Parser runs 20X faster or so.
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Sample output program for lalr generator

(defun lalr-parser (next-input parse-error)
(let ((cat-la 'nil) (val-la 'nil) (val-stack 'nil) (state-stack 'nil))

(labels ((input-peek nil …;;these 3 subprograms are standard
(shift-from (name) …
(reduce-cat (name cat ndaughters action)…
(STATE-0 nil  ;; generated specifically from grammar

(case (input-peek)
(fconst (shift-from #'STATE-0) (STATE-14))
…
(exp (shift-from #'STATE-0) (STATE-1))
(otherwise (funcall parse-error))))

(STATE-1 nil
(case (input-peek)

(+ (shift-from #'STATE-1) (STATE-9))
(- (shift-from #'STATE-1) (STATE-2))
((nil) (reduce-cat #'STATE-1 '$Start 1 nil))
(otherwise (funcall parse-error))))

…;etc etc
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Supplement to LR Parsing

Strange Reduce/Reduce Conflicts 
Due to LALR Conversion
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Strange Reduce/Reduce Conflicts

• Consider the grammar
S → P R ,                 NL → N  |  N , NL
P → T  |  NL : T       R → T  | N : T
N → id                    T → id

• P    - parameters specification
• R    - result specification
• N   - a parameter or result name 
• T    - a type name
• NL - a list of names
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Strange Reduce/Reduce Conflicts

• In P an id is a
– N when followed by , or :
– T when followed by id

• In R an id is a
– N when followed by :
– T when followed by ,

• This is an LR(1) grammar.
• But it is not LALR(1). Why?

– For obscure reasons
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A Few LR(1) States

P → • T            id

P → • NL : T     id

NL → • N           :

NL → • N , NL   :

N → • id            :

N → • id            ,

T → • id           id

1

R → • T             ,

R → • N : T       ,

T → • id            ,

N → • id           :

2

T → id  • id

N → id • :

N → id • ,
id

3

T → id  • ,

N → id • :
id 4

T → id  • id/,

N → id • :/,
LALR merge

LALR reduce/reduce 
conflict on “,”
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What Happened?

• Two distinct states were confused because 
they have the same core

• Fix: add dummy productions to distinguish the 
two confused states

• E.g., add
R → id bogus

– bogus is a terminal not used by the lexer
– This production will never be used during parsing
– But it distinguishes R from P
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A Few LR(1) States After Fix

P → • T            id

P → • NL : T     id

NL → • N           :

NL → • N , NL   :

N → • id            :

N → • id            ,

T → • id           id

R → . T             ,

R → . N : T       ,

R → . id bogus  ,

T → . id            ,

N → . id           :

T → id  • id

N → id • :

N → id • ,

T → id  • ,

N → id • :

R → id • bogus ,

id

id

1

2

3

4

Different cores ⇒ no LALR merging
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