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Announcements…

• Programming Assignment 2 due Thurs Sept 22.
• Midterm Exam #1 on Thursday Sept 29

– In Class
– ONE handwritten page (2 sides). 
– Your handwriting
– No computer printouts, no calculators or cellphones
– Bring a pencil
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Review

• We can specify language syntax using CFG
• A parser will answer whether σ ∈ L(G)
• … and will build a parse tree
• … which is essentially an AST
• … and pass on to the rest of the compiler

• Next few lectures:
– How do we answer σ ∈ L(G) and build a parse tree?

• After that: from AST to … assembly language
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Lecture Outline

• Implementation of parsers
• Two approaches

– Top-down
– Bottom-up

• Today: Top-Down
– Easier to understand and program manually

• Next: Bottom-Up
– More powerful and used by most parser generators
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Intro to Top-Down Parsing

• Terminals are seen in order of 
appearance in the token 
stream: 

t2 t5 t6 t8 t9

• The parse tree is constructed
– From the top
– From left to right

1

t2 3

4

t5

7

t6

t9

t8
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Recursive Descent Parsing

• Consider the grammar 3.10 in text..

S-> if E then S else S
S -> begin S L
S -> print E
L -> end
L -> ; S L
E -> num = num 
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Recursive Descent Parsing: Parsing S

S-> if E then S else S
S -> begin S L
S -> print E
L -> end
L -> ; S L
E -> num = num 

(defun s()(case (car tokens)
(if (eat 'if) 

(e)
(eat 'then)
(s)
(eat 'else)
(s))

(begin (eat 'begin)(s)(l))
(print (eat 'print)(e))
(otherwise (eat 'if ))))

;cheap error. can't 
match if!
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Recursive Descent Parsing: Parsing L

S-> if E then S else S
S -> begin S L
S -> print E
L -> end
L -> ; S L
E -> num = num 

(defun l()(case (car tokens)
(end (eat 'end))
(|;| (eat '|;|) (s)(l))
(otherwise (eat 'end))))
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Recursive Descent Parsing : parsing E

S-> if E then S else S
S -> begin S L
S -> print E
L -> end
L -> ; S L
E -> num = num 

(defun e()(eat 'num)
(eat '=)
(eat 'num))
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Recursive Descent Parsing : utilities

Get-token = pop
Parse checks for empty token list. 

(defun eat(h)
(cond((equal h (car tokens))

(pop tokens)) ;; (pop x) means (setf x (cdr x))
(t (error "stuck at ~s"

tokens))))

(defun parse (tokens)(s)
(if (null tokens) "It is a sentence"))
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Recursive Descent Parsing : tests

(defparameter
test '(begin print num = num \; if num = num 

then print num = num else print num = num end))

(parse test)  “It is a sentence”
(parse ‘(if num then num)) Error: stuck at 
(then num)
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This grammar is very easy. Why?

S-> if E then S else S
S -> begin S L
S -> print E
L -> end
L -> ; S L
E -> num = num 

We can always tell from the first symbol which 
rule to use.  if, begin, print, end, ;, num.
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Recursive Descent Parsing, “backtracking”
Example 2

• Consider another grammar…
E → T + E | T
T → int | int * T | ( E )

• Token stream is:   int5 * int2
• Start with top-level non-terminal E

• Try the rules for E in order
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Recursive Descent Parsing. Backtracking

• Try E0 → T1 + E2
• Then try a rule for T1 → ( E3 )

– But ( does not match input token int5

• Try T1 → int . Token matches. 
– But + after T1 does not match input token *

• Try T1 → int * T2
– This will match int but + after T1 will be unmatched

• Parser has exhausted the choices for T1
– Backtrack to choice for E0

E → T + E | T
T → int | int * T | ( E )

int5 * int2
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Recursive Descent Parsing. Backtracking

• Try E0 → T1
• Follow same steps as before for T1

– And succeed with T1 → int * T2 and T2 → int
– With the following parse tree

E0

T1

int5 * T2

int2
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Recursive Descent Parsing (Backtracking)

• Do we have to backtrack?? Trick is to look 
ahead to find the first terminal symbol to 
figure out for sure which rule to try.

• Indeed backtracking is not needed, if the 
grammar is suitable. This grammar is suitable 
for prediction.

• Sometimes you can come up with a “better”
grammar for the same exact language.
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Lookahead makes backtracking unnecessary

(defun E()
(T) 
(case (car tokens)

(+ (eat '+) (E)) ;E -> T+E
(otherwise nil)))

(defun T() ;; Lookahead resolves rule choice
(case (car tokens)

(\( (eat '\() (E) (eat '\)) ) ; T->(E)
(int (eat 'int) ; T -> int | int*T

(case (car tokens)           ; look beyond int
(* (eat '*)(T)) ; T -> int * T
(otherwise nil))) ; T -> int

(otherwise (eat 'end))))
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When Recursive Descent Does Not Work

• Consider a production S → S a  | …
– suggests a program something like…
– (defun S() (S) (eat ‘a))

• S() will get into an infinite loop

• A left-recursive grammar has a non-terminal S
S ⇒ + Sα for some α

• Recursive descent does not work in such cases
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Elimination of Left Recursion

• Consider the left-recursive grammar
S → S α | β

• S generates all strings starting with a β and 
followed by a number of α [α, β are strings 
of terminals, in these examples.]

• Can rewrite using right-recursion
S → β S’

S’ → α S’ | ε
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More Elimination of Left-Recursion

• In general
S → S α1 | … | S αn | β1 | … | βm

• All strings derived from S start with one of 
β1,…,βm and continue with several instances of
α1,…,αn

• Rewrite as
S → β1 S’ | … | βm S’

S’ → α1 S’ | … | αn S’ | ε
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General Left Recursion

• The grammar 
S → A α | δ

A → S β
is also left-recursive (even without a left-recursive 

RULE) because
S ⇒+ S β α

• This left-recursion can also be eliminated
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Summary of Recursive Descent

• Simple and general parsing strategy
– Left-recursion must be eliminated first
– … but that can be done automatically

• Not so popular because common parser-generator 
tools allow more freedom in making up grammars.

• (False) reputation of inefficiency
• If hand-written, powerful error correction and 

considerable flexibility.
• Sometimes Rec Des is used for lexical analysis. 

Balanced comment delimiters /*/* .. */ .. */, e.g.
• In practice, backtracking does not happen ever.
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Predictive Parsers: generalizing lookahead

• Like recursive-descent but parser can 
“predict” which production to use
– By looking at the next few tokens
– No backtracking 

• Predictive parsers accept LL(k) grammars
– L means “left-to-right” scan of input
– L means “leftmost derivation”
– k means “predict based on k tokens of lookahead”

• In practice, LL(1) is used
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LL(1) Languages

• In recursive-descent, for each non-terminal 
and input token there may be a choice of 
production

• LL(1) means that for each non-terminal and 
token there is only one production

• Can be specified via 2D tables
– One dimension for current non-terminal to expand
– One dimension for next token
– A table entry contains  one production
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Predictive Parsing and Left Factoring

• Recall the grammar
E → T + E | T
T → int | int * T | ( E )

• Hard to predict because
– For T two productions start with int
– For E it is not clear how to predict

• A grammar must be left-factored before use 
for predictive parsing
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Left-Factoring Example

• Recall the grammar
E → T + E | T
T → int | int * T | ( E )

• Factor out common prefixes of productions
E → T X
X → + E | ε
T → ( E ) | int Y
Y → * T | ε
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LL(1) Parsing Table Example

• Left-factored grammar
E → T X                               X → + E | ε
T → ( E ) | int Y                   Y → * T | ε

• The LL(1) parsing table:
int * + ( ) $

E T X T X
X + E ε ε
T int Y ( E )
Y * T ε ε ε
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LL(1) Parsing Table Example (Cont.)

• Consider the [E, int] entry
– “When current non-terminal is E and next input is 

int, use production  E → T X
– This production can generate an int in the first 

place
• Consider the [Y,+] entry

– “When current non-terminal is Y and current token 
is +, get rid of Y”

– Y can be followed by + only in a derivation in which  
Y ε



Prof. Fateman  CS 164  Lecture 8 29

LL(1) Parsing Tables. Errors

• Blank entries indicate error situations
– Consider the [E,*] entry
– “There is no way to derive a string starting with *

from non-terminal E”
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Using Parsing Tables

• Method similar to recursive descent, except
– For each non-terminal X
– We look at the next token a
– And chose the production shown at [X,a]

• We use a stack to keep track of pending non-
terminals

• We reject when we encounter an error state
• We accept when we encounter end-of-input  
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LL(1) Parsing Algorithm

initialize stack = <S $> and next 
repeat

case stack of
<X, rest>  : if T[X,nextinput] = Y1…Yn

then stack ← <Y1… Yn ,rest>;
else  error ();   

<t, rest>   : if t = nextinput
then  stack ← <rest>;
else error ();

until stack is empty
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LL(1) Parsing Example

Stack                        Input                            Action
E $                            int * int $                     T X
T X $                        int * int $                      int Y
int Y X $                   int * int $                      terminal
Y X $                        * int $                            * T
* T X $                     * int $                            terminal
T X $                        int $                               int Y
int Y X $                   int $                               terminal
Y X $                        $                                  ε
X $                           $                                 ε
$                              $                                ACCEPT
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Constructing Parsing Tables

• LL(1) languages are those defined by a parsing 
table for the LL(1) algorithm

• No table entry can be multiply defined

• We want to generate parsing tables from CFG
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Constructing Parsing Tables (Cont.)

• If A → α, where in the line  A do we place α ?
• In the column of t where t can start a string 

derived from α
– α * t β
– We say that t ∈ First(α)

• In the column of t if α is ε and t can follow an 
A
– S * β A t δ
– We say t ∈ Follow(A)



Prof. Fateman  CS 164  Lecture 8 35

Computing First Sets

Definition
First(X) = { t | X →* tα} ∪ {ε | X →* ε}

Algorithm sketch:
1. First(t) = { t }
2. ε ∈ First(X) if X → ε is a production
3. ε ∈ First(X) if X → A1 … An

– and ε ∈ First(Ai) for 1 ≤ i ≤ n
4. First(α) ⊆ First(X) if X → A1 … An α

– and ε ∈ First(Ai) for 1 ≤ i ≤ n
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First Sets. Example

• Recall the grammar 
E → T X                               X → + E | ε
T → ( E ) | int Y                   Y → * T | ε

• First sets
First( ( ) = { ( }            First( T ) = {int, ( }
First( ) ) = { ) }            First( E ) = {int, ( }
First( int) = { int }       First( X ) = {+, ε }
First( + ) = { + }            First( Y ) = {*, ε }
First( * ) = { * }
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Computing First Sets by Computer

• Recall the grammar 
E → T X                               X → + E | ε
T → ( E ) | int Y                   Y → * T | ε

• First sets
First( ( ) = { ( }            First( T ) = {int, ( }
First( ) ) = { ) }            First( E ) = {int, ( }
First( int) = { int }       First( X ) = {+, ε }
First( + ) = { + }            First( Y ) = {*, ε }
First( * ) = { * }
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Computing Follow Sets

• Definition:
Follow(X) = { t | S →* β X t δ }

• Intuition
– If X A B then First(B) ⊆ Follow(A) and

Follow(X) ⊆ Follow(B)
– Also if B * ε then Follow(X) ⊆ Follow(A)
– If S is the start symbol then $ ∈ Follow(S)
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Computing Follow Sets (Cont.)

Algorithm sketch:
1. $ ∈ Follow(S)
2. First(β) - {ε} ⊆ Follow(X)

– For each production A → α X β
3. Follow(A) ⊆ Follow(X)

– For each production A → α X β where ε ∈ First(β)
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Follow Sets. Example

• Recall the grammar 
E → T X                               X → + E | ε
T → ( E ) | int Y                   Y → * T | ε

• Follow sets
Follow( + ) = { int, ( }    Follow( * ) = { int, ( } 
Follow( ( ) = { int, ( }     Follow( E ) = {), $} 
Follow( X ) = {$, ) }       Follow( T ) = {+, ) , $}
Follow( ) ) = {+ ,), $}     Follow( Y ) = {+, ) , $}
Follow( int) = {*, +, ) , $}
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Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production  A → α in G do:
– For each terminal t ∈ First(α) do

• T[A, t] = α
– If ε ∈ First(α), for each t ∈ Follow(A) do

• T[A, t] = α
– If ε ∈ First(α) and $ ∈ Follow(A) do

• T[A, $] = α
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Computing with Grammars. Step One:  
Representing a grammar in Lisp.  

(defparameter lect8 ;; here’s one way
'((E -> T X)

(T -> \( E \) )
(T -> int Y)
(X -> + T)
(X -> )
(Y -> * T)
(Y -> )))
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Computing some useful information

(defun rhs(r) (cddr r)) ;; e.g. r is (E -> T + E)
(defun lhs(r) (first r))

(defun non-terminals(g) (remove-duplicates (mapcar #'lhs g)))

(defun terminals(g)
(set-difference (reduce #'union (mapcar #'rhs g))

(non-terminals g) ))



Prof. Fateman  CS 164  Lecture 8 44

Representing sets

(defmacro First (x) ;x is a symbol
`(gethash ,x First))

(defmacro Follow(x) ;x is a symbol
`(gethash ,x Follow))

(defmacro addinto(place stuff) 
`(setf ,place (union ,place ,stuff)))

;; alternatively, if we have just one set, like 
;; which symbols are nullable,  we might just
;; assign  (setf nullable ‘())
;; and     (push ‘x nullable) ;; to insert x into that set…
;;  same as (setf nullable (cons ‘x nullable))
;;; you know this from your lexical analysis program, though..
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Compute Nullable set

;; Compute nullable set of a grammar. The non-terminal symbol X is
;; nullable if X can derive an empty string, X =>..=> .. => empty.  
;;Given
;; grammar g, return a lisp list of symbols that are nullable.
(defun nullableset(g)
(let ((nullable nil)

(changed? t))
(while changed?

(setf changed? nil)
(dolist (r g) ; for each rule
(cond
;; if X is already nullable, do nothing.
((member (lhs r) nullable) nil)
;; for each rule (X -> A B C ), 
;; X is nullable if every one of A, B, C is nullable
((every #'(lambda(z)(member z nullable))(rhs r))
(push (lhs r) nullable)
(setf changed? t))))) 

(sort nullable #'string<))) ;sort to make it look nice

See firstfoll.cl for details
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Compute Firstset

(defun firstset(g);; g is a list of grammar rules
(let ((First (make-hash-table)) ;; First is a hashtable, in addition 

to a relation First[x]
(nullable (nullableset g))
(changed? t))

;; for each terminal symbol j, First[j] = {j}
(dolist (j  (terminals g))

(setf (First j)(list j)))
(while changed?

(setf changed? nil)
(dolist (r g)
;; for each rule in the grammar  X -> A B C
...see next slide...
;; did this First set or any other First set
;; change in this run?
(setf changed? (or changed? (< setsize (length (First X)))))))

) ; exit from loop
First    ))

See firstfoll.cl for details
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(defun firstset(g);; g is a list of grammar rules
(let ((First (make-hash-table)) ;; First is a hashtable, in addition to a 

relation First[x]
(nullable (nullableset g))
(changed? t))

;; for each terminal symbol j, First[j] = {j}
(dolist (j  (terminals g))
(setf (First j)(list j)))

(while changed?
(setf changed? nil)
(dolist (r g)
;; for each rule in the grammar  X -> A B C

(let* ((X (lhs r))
(RHS (rhs r))
(setsize (length (First X))))  

;; First[X]= First[X] U First[A]
(cond ((null RHS) nil)

(t (addinto (First X)(First (car RHS)))))
(while (member (car RHS) nullable)

(pop RHS)
(addinto (First X)(First (car RHS))
))

;end of inner while
;; did this First set or any other First set
;; change in this run?
(setf changed? (or changed? (< setsize (length (First X)))))))

) ; exit from loop
First    ))
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Followset in Lisp

((defun followset(g);; g is a list of grammar rules

(let ((First (firstset g))
(Follow (make-hash-table))
(nullable (nullableset g))
(changed? t))

(while 
changed?
(setf changed? nil)
(dolist (r g)

;; for each rule in the grammar  X -> A B C D
;;(format t "~%rule is ~s" r)
(do  ((RHS (rhs r)(cdr RHS)))

;; test to end the do loop
((null  RHS) 'done )

;; let RHS be, in succession,
;; (A B C D)
;; (B C D)
;; (C D)
;; (D)
(if (null RHS) nil ;; no change in follow set for erasing rule
(let* ((A (car RHS))

(Blist (cdr RHS)) ; e.g. (B C D)
(Asize (length (Follow A))))

(if(every #'(lambda(z)(member z nullable)) Blist) 
;; X -> A <nullable> ... then anything 
….more

See firstfoll.cl for details
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Followset in Lisp, continuedSee firstfoll.cl for details

((defun followset(g);; g is a list of grammar rules 

;;;; . . . 

(if(every #'(lambda(z)(member z nullable)) Blist) 
;; X -> A <nullable> ... then anything 
;; following X can follow A:
;; Follow[A] = Follow[A] U Follow[X]
(addinto (Follow A)(Follow (lhs r))))

(if Blist ;not empty
;; Follow[A]= Follow[A] U First[B]
(addinto (Follow A)(First (car Blist))))

(while (and Blist (member (car Blist) nullable))
;;false when Blist =()
;; if X -> A B C and B is nullable, then
;;Follow[A]=Follow[A] U First(C)

(pop Blist)
(addinto (Follow A)(First (car Blist))))

(setf changed? (or changed? (< Asize (length (Follow A))))))))))

;; Remove the terminal symbols in Follow table
;;  are uninteresting
;; Return the hashtable "Follow" which has pairs  like <X (a b)>.
(mapc #'(lambda(v)(remhash v Follow)) (terminals g))
;;(printfols Follow) ; print the table for human consumption
Follow  ; for further processing

))
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Predictive parsing table

(pptab lect8)

First Sets
symbol    First
------------------
(         ( 
)         ) 
*         * 
+         + 
E         ( int
T         ( int
X         + 
Y         * 
int int

Follow Sets
symbol    Follow
------------------
E         ) 
T         ) + 
X         ) 
Y         ) + 
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Predictive parsing table

(ht2grid(pptab lect8))
rows = (E T X Y), cols= (|(| |)| * + int)

(            )            *            +        int
-----------------------------
E            |E -> T X    |            |            |            |E -> T X 
T            |T -> ( E )  |            |            |            |T -> int Y 
X            |            |X ->        |            |X -> + T    |
Y            |            |Y ->        |Y -> * T    |Y 
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Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not LL(1)
– If G is ambiguous
– If G is left recursive
– If G is not left-factored
– And in other cases as well

• Most programming language grammars are not LL(1), 
but could be made so with a little effort.

• Firstfoll.cl builds an LL(1) parser.  About 140 lines of 
Lisp code. (With comments, debugging code, test data, 
the file is about 550 lines)
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Review

• For some grammars / languages there is a 
simple parsing strategy based on recursive 
descent. It even can be automated: 
Predictive parsing

• Next: a more powerful parsing strategy
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