Top-Down Parsing

CS164

Lecture 8

Announcements...

- Programming Assignment 2 due Thurs Sept 22.
- Midterm Exam \#1 on Thursday Sept 29
- In Class
- ONE handwritten page (2 sides).
- Your handwriting
- No computer printouts, no calculators or cellphones
- Bring a pencil

Review

- We can specify language syntax using CFG
- A parser will answer whether $\sigma \in L(G)$
- ... and will build a parse tree
- ... which is essentially an AST
- ... and pass on to the rest of the compiler
- Next few lectures:
- How do we answer $\sigma \in L(G)$ and build a parse tree?
- After that: from AST to ... assembly language

Lecture Outline

- Implementation of parsers
- Two approaches
- Top-down
- Bottom-up
- Today: Top-Down
- Easier to understand and program manually
- Next: Bottom-Up
- More powerful and used by most parser generators

Intro to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream:

$$
t_{2} t_{5} t_{6} t_{8} t_{9}
$$

- The parse tree is constructed
- From the top

- From left to right

Recursive Descent Parsing

- Consider the grammar 3.10 in text..
S-> if E then S else S
S-> begin $S L$
$S \rightarrow$ print E
$L \rightarrow$ end
L->; SL
E-> num = num

Recursive Descent Parsing: Parsing S

(defun s() (case (car tokens)
S-> if E then S else S (if (eat 'if)
$S \rightarrow$ begin $S L$
$S \rightarrow$ print E
L-> end
L->; SL
(e)
(eat 'then)
(s)
(eat 'else)
(s))
(begin (eat 'begin) (s) (l))
(print (eat 'print) (e))
(otherwise (eat 'if)))) ;cheap error. can't
match if!

Recursive Descent Parsing: Parsing L

```
(defun l()(case (car tokens)
S-> if E then S else S (end (eat 'end))
    (|;| (eat '|;|) (s) (l))
    (otherwise (eat 'end))))
S -> print E
L >> end
L -> ; SL
E -> num = num
```


Recursive Descent Parsing : parsing E

S-> if E then S else S
$S \rightarrow$ begin $S L$
$S \rightarrow \operatorname{print} E$
$L \rightarrow$ end
(defun e() (eat 'num)
(eat '=)
(eat 'num))
L-> SL
$E \rightarrow$ num $=$ num

Recursive Descent Parsing : utilities

Get-token = pop
Parse checks for empty token list.
(defun eat (h)
(cond ((equal h (car tokens))
(pop tokens)) ; ; (pop x) means (setf x (cdr x))
(t (error "stuck at ~s" tokens))) (
(defun parse (tokens) (s)
(if (null tokens) "It is a sentence"))

Recursive Descent Parsing : tests

```
(defparameter
    test '(begin print num = num \; if num = num
then print num = num else print num = num end))
(parse test) }->\mathrm{ "It is a sentence"
(parse '(if num then num)) }->\mathrm{ Error: stuck at
(then num)
```


This grammar is very easy. Why?

S-> if E then S else S
$S \rightarrow$ begin $S L$
S-> print E
L-> end
L -> ; SL
E-> num = num

We can always tell from the first symbol which rule to use. if, begin, print, end, ;, num.

Recursive Descent Parsing, "backtracking" Example 2

- Consider another grammar...

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow \text { int } \mid \text { int } * T \mid(E)
\end{aligned}
$$

- Token stream is: int $_{5}{ }^{*}$ int $_{2}$
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Parsing. Backtracking

- Try $E_{0} \rightarrow T_{1}+E_{2}$

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow \text { int } \mid \text { int * } T \mid(E)
\end{aligned}
$$

- Try $\mathrm{T}_{1} \rightarrow$ int. Token matches.
- But + after T_{1} does not match input token *
- Try $\mathrm{T}_{1} \rightarrow$ int ${ }^{*} \mathrm{~T}_{2}$
- This will match int but + after T_{1} will be unmatched
- Parser has exhausted the choices for T_{1}
- Backtrack to choice for E_{0}

Recursive Descent Parsing. Backtracking

- Try $E_{0} \rightarrow T_{1}$
- Follow same steps as before for T_{1}
- And succeed with $\mathrm{T}_{1} \rightarrow$ int ${ }^{*} \mathrm{~T}_{2}$ and $\mathrm{T}_{2} \rightarrow$ int
- With the following parse tree

Recursive Descent Parsing (Backtracking)

- Do we have to backtrack?? Trick is to look ahead to find the first terminal symbol to figure out for sure which rule to try.
- Indeed backtracking is not needed, if the grammar is suitable. This grammar is suitable for prediction.
- Sometimes you can come up with a "better" grammar for the same exact language.

Lookahead makes backtracking unnecessary

(defun $E()$
(T)
(case (car tokens)
(+ (eat '+) (E))
; E -> $\mathrm{T}+\mathrm{E}$
(otherwise nil)))
(defun $T()$; ; Lookahead resolves rule choice (case (car tokens)
(
((eat $' \backslash()(E)($ eat $' \backslash))$) ; T->(E)
(int (eat 'int) ; T -> int | int*T
(case (car tokens) ; look beyond int

(otherwise nil)))
; T-> int
(otherwise (eat 'end))))

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow$ S a | ...
- suggests a program something like...
- (defun S() (S) (eat 'a))
- $S()$ will get into an infinite loop
- A left-recursive grammar has a non-terminal S

$$
S \Rightarrow^{+} S \alpha \text { for some } \alpha
$$

- Recursive descent does not work in such cases

Elimination of Left Recursion

- Consider the left-recursive grammar

$$
S \rightarrow S \alpha \mid \beta
$$

- S generates all strings starting with a β and followed by a number of $\alpha[\alpha, \beta$ are strings of terminals, in these examples.]
- Can rewrite using right-recursion

$$
\begin{aligned}
& S \rightarrow \beta S^{\prime} \\
& S^{\prime} \rightarrow \alpha S^{\prime} \mid \varepsilon
\end{aligned}
$$

More Elimination of Left-Recursion

- In general

$$
S \rightarrow S \alpha_{1}|\ldots| S \alpha_{n}\left|\beta_{1}\right| \ldots \mid \beta_{m}
$$

- All strings derived from S start with one of $\beta_{1}, \ldots, \beta_{m}$ and continue with several instances of $\alpha_{1}, \ldots, \alpha_{n}$
- Rewrite as

$$
\begin{aligned}
& S \rightarrow \beta_{1} S^{\prime}|\ldots| \beta_{m} S^{\prime} \\
& S^{\prime} \rightarrow \alpha_{1} S^{\prime}|\ldots| \alpha_{n} S^{\prime} \mid \varepsilon
\end{aligned}
$$

General Left Recursion

- The grammar

$$
\begin{gathered}
S \rightarrow A \alpha \mid \delta \\
A \rightarrow S \beta
\end{gathered}
$$

is also left-recursive (even without a left-recursive RULE) because

$$
S \Rightarrow^{+} S \beta \alpha
$$

- This left-recursion can also be eliminated

Summary of Recursive Descent

- Simple and general parsing strategy
- Left-recursion must be eliminated first
- ... but that can be done automatically
- Not so popular because common parser-generator tools allow more freedom in making up grammars.
- (False) reputation of inefficiency
- If hand-written, powerful error correction and considerable flexibility.
- Sometimes Rec Des is used for lexical analysis. Balanced comment delimiters /*/* .. */ .. */, e.g.
- In practice, backtracking does not happen ever.

Predictive Parsers: generalizing lookahead

- Like recursive-descent but parser can "predict" which production to use
- By looking at the next few tokens
- No backtracking
- Predictive parsers accept LL(k) grammars
- L means "left-to-right" scan of input
- L means "leftmost derivation"
- k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
- One dimension for current non-terminal to expand
- One dimension for next token
- A table entry contains one production

Predictive Parsing and Left Factoring

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow \text { int } \mid \text { int } * T \mid(E)
\end{aligned}
$$

- Hard to predict because
- For T two productions start with int
- For E it is not clear how to predict
- A grammar must be left-factored before use for predictive parsing

Left-Factoring Example

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow \text { int } \mid \text { int * } T \mid(E)
\end{aligned}
$$

- Factor out common prefixes of productions

$$
\begin{aligned}
& E \rightarrow T X \\
& X \rightarrow+E \mid \varepsilon \\
& T \rightarrow(E) \mid \text { int } Y \\
& Y \rightarrow * T \mid \varepsilon
\end{aligned}
$$

LL(1) Parsing Table Example

- Left-factored grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \operatorname{int} Y & Y \rightarrow * T \mid \varepsilon
\end{array}
$$

- The LL(1) parsing table:

	int	$*$	+	$($	$)$	$\$$
E	$T X$			$T X$		
X			$+E$		ε	ε
T	int Y			(E)		
Y		$* T$	ε		ε	ε

Prof. Fateman CS 164 Lecture 8

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
- "When current non-terminal is E and next input is int, use production $E \rightarrow T X$
- This production can generate an int in the first place
- Consider the [Y,+] entry
- "When current non-terminal is Y and current token is + , get rid of $Y^{\prime \prime}$
- Y can be followed by + only in a derivation in which Y © ε

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
- Consider the $[E, *]$ entry
- "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
- For each non-terminal X
- We look at the next token a
- And chose the production shown at [X,a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

initialize stack $=<$ S \$> and next
repeat
case stack of
$<X$, rest> : if $T[X$, nextinput $]=Y_{1} \ldots Y_{n}$ then stack $\leftarrow<Y_{1} \ldots Y_{n}$, rest>; else error ();
<t, rest> : if $t=$ nextinput then stack $\leftarrow<$ rest>; else error ();
until stack is empty

LL(1) Parsing Example

Stack	Input	Action
E \$	int * int \$	TX
TX \$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y \times \$	* int \$	* T
* TX \$	* int \$	terminal
TX \$	int \$	int Y
int Y X \$	int \$	terminal
Y \times \$	\$	ε
X \$	\$	ε
\$	\$	ACCEPT

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG

Constructing Parsing Tables (Cont.)

- If $A \rightarrow \alpha$, where in the line A do we place α ?
- In the column of \dagger where \dagger can start a string derived from α
- $\alpha \boldsymbol{\varrho}^{*}+\beta$
- We say that $t \in$ First (α)
- In the column of t if α is ε and t can follow an

A

- S © ${ }^{*} \beta A+\delta$
- We say $t \in$ Follow(A)

Computing First Sets

Definition

$$
\operatorname{First}(X)=\left\{\dagger \mid X \rightarrow^{*} \dagger \alpha\right\} \cup\left\{\varepsilon \mid X \rightarrow^{*} \varepsilon\right\}
$$

Algorithm sketch:

1. $\operatorname{First}(t)=\{t\}$
2. $\varepsilon \in$ First (X) if $X \rightarrow \varepsilon$ is a production
3. $\varepsilon \in \operatorname{First}(X)$ if $X \rightarrow A_{1} \ldots A_{n}$

- and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for $1 \leq i \leq n$

4. First $(\alpha) \subseteq$ First (X) if $X \rightarrow A_{1} \ldots A_{n} \alpha$

- and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for $1 \leq i \leq n$

First Sets. Example

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T X \\
& T \rightarrow(E) \mid \operatorname{int} Y
\end{aligned}
$$

$$
\begin{aligned}
& X \rightarrow+E \mid \varepsilon \\
& Y \rightarrow{ }^{*} T \mid \varepsilon
\end{aligned}
$$

- First sets

First(() =\{ ($\}$
$\operatorname{First}())=\{)\}$
First(int) $=\{$ int $\}$
First (+) $=\{+\}$
First(T) $=\{$ int, ($\}$
First(E) $=\{$ int, ($\}$
First $(X)=\{+, \varepsilon\}$
$\operatorname{First}(Y)=\{*, \varepsilon\}$
$\operatorname{First}(*)=\{*\}$

Computing First Sets by Computer

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T X \\
& T \rightarrow(E) \mid \operatorname{int} Y
\end{aligned}
$$

- First sets

First(() = $\{(\}$
First()) $=\{$) $\}$
First(int) $=\{$ int $\}$
First $(+)=\{+\}$

$$
\begin{aligned}
& X \rightarrow+E \mid \varepsilon \\
& Y \rightarrow{ }^{*} T \mid \varepsilon
\end{aligned}
$$

First(T) $=\{$ int, ($\}$
First(E) $=\{$ int, ($\}$
$\operatorname{First}(X)=\{+, \varepsilon\}$
$\operatorname{First}(Y)=\{*, \varepsilon\}$

First(*) $=\{*\}$

Computing Follow Sets

- Definition:

$$
\text { Follow }(X)=\left\{\dagger \mid S \rightarrow^{*} \beta X \dagger \delta\right\}
$$

- Intuition
- If X $\odot A B$ then $\operatorname{First}(B) \subseteq$ Follow (A) and Follow $(X) \subseteq$ Follow (B)
- Also if B $0^{*} \varepsilon$ then Follow $(X) \subseteq$ Follow (A)
- If S is the start symbol then $\$ \in$ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch:

1. $\$ \in$ Follow(S)
2. First $(\beta)-\{\varepsilon\} \subseteq$ Follow (X)

- For each production $A \rightarrow \alpha \times \beta$

3. Follow $(A) \subseteq$ Follow (X)

- For each production $A \rightarrow \alpha \times \beta$ where $\varepsilon \in$ First (β)

Follow Sets. Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \operatorname{int} Y & Y \rightarrow^{*} T \mid \varepsilon
\end{array}
$$

- Follow sets

Follow(+) = \{int, ($\}$ Follow(*) $=\{$ int, ($\}$
Follow(() = \{int, ($\} \quad$ Follow (E) $=\{$), \$\}
Follow $(X)=\{\$)$,$\} \quad Follow (T)=\{+),, \$\}$
Follow ()) $=\{+$,), \$\} Follow $(Y)=\{+),, \$\}$
Follow(int) $=\{*,+$,), \$\}

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
- For each terminal $t \in$ First (α) do
- $T[A, \dagger]=\alpha$
- If $\varepsilon \in \operatorname{First}(\alpha)$, for each $t \in \operatorname{Follow}(A)$ do
- $T[A, \dagger]=\alpha$
- If $\varepsilon \in \operatorname{First}(\alpha)$ and $\$ \in \operatorname{Follow}(A)$ do
- $T[A, \$]=\alpha$

Computing with Grammars. Step One: Representing a grammar in Lisp.

(defparameter lect8 ; ; here's one way
' ((E -> T X)
(T->
(E
))
($\mathrm{T}->$ int Y)
($\mathrm{X}->+\mathrm{T}$)
($\mathrm{X}->$)
(Y -> * T)
(Y ->)))

Computing some useful information

```
(defun rhs(r) (cddr r)) ; ; e.g. r is (E -> T + E)
(defun lhs(r) (first r))
(defun non-terminals(g) (remove-duplicates (mapcar #'lhs g)))
(defun terminals(g)
    (set-difference (reduce #'union (mapcar #'rhs g))
    (non-terminals g) ))
```


Representing sets

(defmacro First (x) ; x is a symbol
-(gethash ,x First))
(defmacro Follow(x) ; x is a symbol
-(gethash ,x Follow))
(defmacro addinto(place stuff)
-(setf ,place (union ,place ,stuff)))
; ; alternatively, if we have just one set, like
; ; which symbols are nullable, we might just
; ; assign (setf nullable '())
; ; and (push 'x nullable) ; ; to insert x into that set...
; ; same as (setf nullable (cons 'x nullable))
;; you know this from your lexical analysis program, though..

Compute Nullable set

See firstfoll.cl for details

; ; Compute nullable set of a grammar. The non-terminal symbol X is ; ; nullable if X can derive an empty string, $X=>. .=>$. => empty. ; ; Given
; ; grammar g, return a lisp list of symbols that are nullable.
(defun nullableset (g)
(let ((nullable nil) (changed? t))
(while changed?
(setf changed? nil)
(dolist (r g) ; for each rule
(cond
; ; if X is already nullable, do nothing.
((member (lhs r) nullable) nil)
; ; for each rule (X -> A B C),
; X is nullable if every one of A, B, C is nullable ((every \#'(lambda(z) (member z nullable)) (rhs r)) (push (lhs r) nullable) (setf changed? t))))

Compute Firstset

See firstfoll.cl for details

```
(defun firstset(g); ; g is a list of grammar rules
    (let ((First (make-hash-table)) ; ; First is a hashtable, in addition
to a relation First[x]
            (nullable (nullableset g))
            (changed? t))
    ;; for each terminal symbol j, First[j] = {j}
    (dolist (j (terminals g))
        (setf (First j)(list j)))
        (while changed?
        (setf changed? nil)
        (dolist (r g)
        ; f for each rule in the grammar X -> A B C
            ...see next slide...
            ;; did this First set or any other First set
                ;; change in this run?
                (setf changed? (or changed? (< setsize (length (First X)))))))
    ) ; exit from loop
First ))
```

```
    (defun firstset(g); ; g is a list of grammar rules
    (let ((First (make-hash-table)) ; ; First is a hashtable, in addition to a
relation First[x]
        (nullable (nullableset g))
        (changed? t))
    ;; for each terminal symbol j, First[j] = {j}
    (dolist (j (terminals g))
        (setf (First j)(list j)))
    (while changed?
        (setf changed? nil)
        (dolist (r g)
        ;; for each rule in the grammar X -> A B C
            (let* ((X (lhs r))
                    (RHS (rhs r))
                        (setsize (length (First X))))
                ;; First[X]= First[X] U First[A]
                (cond ((null RHS) nil)
                    (t (addinto (First X)(First (car RHS)))))
                (while (member (car RHS) nullable)
                    (pop RHS)
                    (addinto (First X) (First (car RHS))
                        ))
                            ;end of inner while
                ;; did this First set or any other First set
                ;; change in this run?
                (setf changed? (or changed? (< setsize (length (First X)))))))
    ) ; exit from loop
First ))

\section*{Followset in Lisp}

\section*{See firstfoll.cl for details}
```

((defun followset(g);; g is a list of grammar rules
(let ((First (firstset g))
(Follow (make-hash-table))
(nullable (nullableset g))
(changed? t))
(while
changed?
(setf changed? nil)
(dolist (r g)
; ; for each rule in the grammar X -> A B C D
;;(format t "~%rule is ~s" r)
(do ((RHS (rhs r)(cdr RHS)))
;; test to end the do loop
((null RHS) 'done)
;; let RHS be, in succession,
;; (A B C D)
; ; (B C D)
; ; (C D)
;; (D)
(if (null RHS) nil ; ; no change in follow set for erasing rule
(let* ((A (car RHS))
(Blist (cdr RHS)) ; e.g. (B C D)
(Asize (length (Follow A))))
(if (every \#'(lambda (z)fmamber z nul1able)) Blajst)
;; X -> A <nullable> ... then anything
...more

```

\section*{Followset in See firstfoll.cl for details}
```

((defun followset(g);; g is a list of grammar rules

```
    ; ; ; . . .
    (if(every \#'(lambda(z) (member z nullable)) Blist)
                            ; ; X -> A <nullable> ... then anything
            ; f following \(X\) can follow A:
            ; ; Follow[A] = Follow[A] U Follow[X]
            (addinto (Follow A) (Follow (lhs r))))
(if Blist ;not empty
            ; ; Follow [A] = Follow[A] U First[B]
            (addinto (Follow A) (First (car Blist))))
(while (and Blist (member (car Blist) nullable))
                            ; ;false when Blist =()
                            ; ; if X -> A B C and B is nullable, then
                        ; ; Follow [A]=Follow[A] U First(C)
        (pop Blist)
    (addinto (Follow A) (First (car Blist))))
(setf changed? (or changed? (< Asize (length (Follow A)))))))))
    ; ; Remove the terminal symbols in Follow table
    ; ; are uninteresting
    ; ; Return the hashtable "Follow" which has pairs like <X (a b) >.
    (mapc \#'(lambda(v) (remhash v Follow)) (terminals g))
    ; ; (printfols Follow) ; print the table for haman consumption
    Follow ; for further processing

\section*{Predictive parsing table}
(pptab lect8)

First Sets
symbol First
\begin{tabular}{|c|c|c|c|c|}
\hline ( & ( & E & ) & \\
\hline ) & ) & T & ) & + \\
\hline * & * & X & ) & \\
\hline + & + & Y & ) & + \\
\hline E & ( int & & & \\
\hline T & ( int & & & \\
\hline X & + & & & \\
\hline Y & * & & & \\
\hline int & int & & & \\
\hline
\end{tabular}

\section*{Predictive parsing table}


\section*{Notes on LL(1) Parsing Tables}
- If any entry is multiply defined then \(G\) is not \(\operatorname{LL}(1)\)
- If \(G\) is ambiguous
- If \(G\) is left recursive
- If \(G\) is not left-factored
- And in other cases as well
- Most programming language grammars are not LL(1), but could be made so with a little effort.
- Firstfoll.cl builds an LL(1) parser. About 140 lines of Lisp code. (With comments, debugging code, test data, the file is about 550 lines)

\section*{Review}
- For some grammars / languages there is a simple parsing strategy based on recursive descent. It even can be automated: Predictive parsing
- Next: a more powerful parsing strategy```

