
Prof. Fateman CS 164 Lecture 8 1

Top-Down Parsing

CS164
Lecture 8

Prof. Fateman CS 164 Lecture 8 2

Announcements…

• Programming Assignment 2 due Thurs Sept 22.
• Midterm Exam #1 on Thursday Sept 29

– In Class
– ONE handwritten page (2 sides).
– Your handwriting
– No computer printouts, no calculators or cellphones
– Bring a pencil

Prof. Fateman CS 164 Lecture 8 3

Review

• We can specify language syntax using CFG
• A parser will answer whether σ ∈ L(G)
• … and will build a parse tree
• … which is essentially an AST
• … and pass on to the rest of the compiler

• Next few lectures:
– How do we answer σ ∈ L(G) and build a parse tree?

• After that: from AST to … assembly language

Prof. Fateman CS 164 Lecture 8 4

Lecture Outline

• Implementation of parsers
• Two approaches

– Top-down
– Bottom-up

• Today: Top-Down
– Easier to understand and program manually

• Next: Bottom-Up
– More powerful and used by most parser generators

Prof. Fateman CS 164 Lecture 8 5

Intro to Top-Down Parsing

• Terminals are seen in order of
appearance in the token
stream:

t2 t5 t6 t8 t9

• The parse tree is constructed
– From the top
– From left to right

1

t2 3

4

t5

7

t6

t9

t8

Prof. Fateman CS 164 Lecture 8 6

Recursive Descent Parsing

• Consider the grammar 3.10 in text..

S-> if E then S else S
S -> begin S L
S -> print E
L -> end
L -> ; S L
E -> num = num

Prof. Fateman CS 164 Lecture 8 7

Recursive Descent Parsing: Parsing S

S-> if E then S else S
S -> begin S L
S -> print E
L -> end
L -> ; S L
E -> num = num

(defun s()(case (car tokens)
(if (eat 'if)

(e)
(eat 'then)
(s)
(eat 'else)
(s))

(begin (eat 'begin)(s)(l))
(print (eat 'print)(e))
(otherwise (eat 'if))))

;cheap error. can't
match if!

Prof. Fateman CS 164 Lecture 8 8

Recursive Descent Parsing: Parsing L

S-> if E then S else S
S -> begin S L
S -> print E
L -> end
L -> ; S L
E -> num = num

(defun l()(case (car tokens)
(end (eat 'end))
(|;| (eat '|;|) (s)(l))
(otherwise (eat 'end))))

Prof. Fateman CS 164 Lecture 8 9

Recursive Descent Parsing : parsing E

S-> if E then S else S
S -> begin S L
S -> print E
L -> end
L -> ; S L
E -> num = num

(defun e()(eat 'num)
(eat '=)
(eat 'num))

Prof. Fateman CS 164 Lecture 8 10

Recursive Descent Parsing : utilities

Get-token = pop
Parse checks for empty token list.

(defun eat(h)
(cond((equal h (car tokens))

(pop tokens)) ;; (pop x) means (setf x (cdr x))
(t (error "stuck at ~s"

tokens))))

(defun parse (tokens)(s)
(if (null tokens) "It is a sentence"))

Prof. Fateman CS 164 Lecture 8 11

Recursive Descent Parsing : tests

(defparameter
test '(begin print num = num \; if num = num

then print num = num else print num = num end))

(parse test) “It is a sentence”
(parse ‘(if num then num)) Error: stuck at
(then num)

Prof. Fateman CS 164 Lecture 8 12

This grammar is very easy. Why?

S-> if E then S else S
S -> begin S L
S -> print E
L -> end
L -> ; S L
E -> num = num

We can always tell from the first symbol which
rule to use. if, begin, print, end, ;, num.

Prof. Fateman CS 164 Lecture 8 13

Recursive Descent Parsing, “backtracking”
Example 2

• Consider another grammar…
E → T + E | T
T → int | int * T | (E)

• Token stream is: int5 * int2
• Start with top-level non-terminal E

• Try the rules for E in order

Prof. Fateman CS 164 Lecture 8 14

Recursive Descent Parsing. Backtracking

• Try E0 → T1 + E2
• Then try a rule for T1 → (E3)

– But (does not match input token int5

• Try T1 → int . Token matches.
– But + after T1 does not match input token *

• Try T1 → int * T2
– This will match int but + after T1 will be unmatched

• Parser has exhausted the choices for T1
– Backtrack to choice for E0

E → T + E | T
T → int | int * T | (E)

int5 * int2

Prof. Fateman CS 164 Lecture 8 15

Recursive Descent Parsing. Backtracking

• Try E0 → T1
• Follow same steps as before for T1

– And succeed with T1 → int * T2 and T2 → int
– With the following parse tree

E0

T1

int5 * T2

int2

Prof. Fateman CS 164 Lecture 8 16

Recursive Descent Parsing (Backtracking)

• Do we have to backtrack?? Trick is to look
ahead to find the first terminal symbol to
figure out for sure which rule to try.

• Indeed backtracking is not needed, if the
grammar is suitable. This grammar is suitable
for prediction.

• Sometimes you can come up with a “better”
grammar for the same exact language.

Prof. Fateman CS 164 Lecture 8 17

Lookahead makes backtracking unnecessary

(defun E()
(T)
(case (car tokens)

(+ (eat '+) (E)) ;E -> T+E
(otherwise nil)))

(defun T() ;; Lookahead resolves rule choice
(case (car tokens)

(\((eat '\() (E) (eat '\))) ; T->(E)
(int (eat 'int) ; T -> int | int*T

(case (car tokens) ; look beyond int
(* (eat '*)(T)) ; T -> int * T
(otherwise nil))) ; T -> int

(otherwise (eat 'end))))

Prof. Fateman CS 164 Lecture 8 18

When Recursive Descent Does Not Work

• Consider a production S → S a | …
– suggests a program something like…
– (defun S() (S) (eat ‘a))

• S() will get into an infinite loop

• A left-recursive grammar has a non-terminal S
S ⇒ + Sα for some α

• Recursive descent does not work in such cases

Prof. Fateman CS 164 Lecture 8 19

Elimination of Left Recursion

• Consider the left-recursive grammar
S → S α | β

• S generates all strings starting with a β and
followed by a number of α [α, β are strings
of terminals, in these examples.]

• Can rewrite using right-recursion
S → β S’

S’ → α S’ | ε

Prof. Fateman CS 164 Lecture 8 20

More Elimination of Left-Recursion

• In general
S → S α1 | … | S αn | β1 | … | βm

• All strings derived from S start with one of
β1,…,βm and continue with several instances of
α1,…,αn

• Rewrite as
S → β1 S’ | … | βm S’

S’ → α1 S’ | … | αn S’ | ε

Prof. Fateman CS 164 Lecture 8 21

General Left Recursion

• The grammar
S → A α | δ

A → S β
is also left-recursive (even without a left-recursive

RULE) because
S ⇒+ S β α

• This left-recursion can also be eliminated

Prof. Fateman CS 164 Lecture 8 22

Summary of Recursive Descent

• Simple and general parsing strategy
– Left-recursion must be eliminated first
– … but that can be done automatically

• Not so popular because common parser-generator
tools allow more freedom in making up grammars.

• (False) reputation of inefficiency
• If hand-written, powerful error correction and

considerable flexibility.
• Sometimes Rec Des is used for lexical analysis.

Balanced comment delimiters /*/* .. */ .. */, e.g.
• In practice, backtracking does not happen ever.

Prof. Fateman CS 164 Lecture 8 23

Predictive Parsers: generalizing lookahead

• Like recursive-descent but parser can
“predict” which production to use
– By looking at the next few tokens
– No backtracking

• Predictive parsers accept LL(k) grammars
– L means “left-to-right” scan of input
– L means “leftmost derivation”
– k means “predict based on k tokens of lookahead”

• In practice, LL(1) is used

Prof. Fateman CS 164 Lecture 8 24

LL(1) Languages

• In recursive-descent, for each non-terminal
and input token there may be a choice of
production

• LL(1) means that for each non-terminal and
token there is only one production

• Can be specified via 2D tables
– One dimension for current non-terminal to expand
– One dimension for next token
– A table entry contains one production

Prof. Fateman CS 164 Lecture 8 25

Predictive Parsing and Left Factoring

• Recall the grammar
E → T + E | T
T → int | int * T | (E)

• Hard to predict because
– For T two productions start with int
– For E it is not clear how to predict

• A grammar must be left-factored before use
for predictive parsing

Prof. Fateman CS 164 Lecture 8 26

Left-Factoring Example

• Recall the grammar
E → T + E | T
T → int | int * T | (E)

• Factor out common prefixes of productions
E → T X
X → + E | ε
T → (E) | int Y
Y → * T | ε

Prof. Fateman CS 164 Lecture 8 27

LL(1) Parsing Table Example

• Left-factored grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

• The LL(1) parsing table:
int * + () $

E T X T X
X + E ε ε
T int Y (E)
Y * T ε ε ε

Prof. Fateman CS 164 Lecture 8 28

LL(1) Parsing Table Example (Cont.)

• Consider the [E, int] entry
– “When current non-terminal is E and next input is

int, use production E → T X
– This production can generate an int in the first

place
• Consider the [Y,+] entry

– “When current non-terminal is Y and current token
is +, get rid of Y”

– Y can be followed by + only in a derivation in which
Y ε

Prof. Fateman CS 164 Lecture 8 29

LL(1) Parsing Tables. Errors

• Blank entries indicate error situations
– Consider the [E,*] entry
– “There is no way to derive a string starting with *

from non-terminal E”

Prof. Fateman CS 164 Lecture 8 30

Using Parsing Tables

• Method similar to recursive descent, except
– For each non-terminal X
– We look at the next token a
– And chose the production shown at [X,a]

• We use a stack to keep track of pending non-
terminals

• We reject when we encounter an error state
• We accept when we encounter end-of-input

Prof. Fateman CS 164 Lecture 8 31

LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat

case stack of
<X, rest> : if T[X,nextinput] = Y1…Yn

then stack ← <Y1… Yn ,rest>;
else error ();

<t, rest> : if t = nextinput
then stack ← <rest>;
else error ();

until stack is empty

Prof. Fateman CS 164 Lecture 8 32

LL(1) Parsing Example

Stack Input Action
E $ int * int $ T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ ε
X $ $ ε
$ $ ACCEPT

Prof. Fateman CS 164 Lecture 8 33

Constructing Parsing Tables

• LL(1) languages are those defined by a parsing
table for the LL(1) algorithm

• No table entry can be multiply defined

• We want to generate parsing tables from CFG

Prof. Fateman CS 164 Lecture 8 34

Constructing Parsing Tables (Cont.)

• If A → α, where in the line A do we place α ?
• In the column of t where t can start a string

derived from α
– α * t β
– We say that t ∈ First(α)

• In the column of t if α is ε and t can follow an
A
– S * β A t δ
– We say t ∈ Follow(A)

Prof. Fateman CS 164 Lecture 8 35

Computing First Sets

Definition
First(X) = { t | X →* tα} ∪ {ε | X →* ε}

Algorithm sketch:
1. First(t) = { t }
2. ε ∈ First(X) if X → ε is a production
3. ε ∈ First(X) if X → A1 … An

– and ε ∈ First(Ai) for 1 ≤ i ≤ n
4. First(α) ⊆ First(X) if X → A1 … An α

– and ε ∈ First(Ai) for 1 ≤ i ≤ n

Prof. Fateman CS 164 Lecture 8 36

First Sets. Example

• Recall the grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

• First sets
First(() = { (} First(T) = {int, (}
First()) = {) } First(E) = {int, (}
First(int) = { int } First(X) = {+, ε }
First(+) = { + } First(Y) = {*, ε }
First(*) = { * }

Prof. Fateman CS 164 Lecture 8 37

Computing First Sets by Computer

• Recall the grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

• First sets
First(() = { (} First(T) = {int, (}
First()) = {) } First(E) = {int, (}
First(int) = { int } First(X) = {+, ε }
First(+) = { + } First(Y) = {*, ε }
First(*) = { * }

Prof. Fateman CS 164 Lecture 8 38

Computing Follow Sets

• Definition:
Follow(X) = { t | S →* β X t δ }

• Intuition
– If X A B then First(B) ⊆ Follow(A) and

Follow(X) ⊆ Follow(B)
– Also if B * ε then Follow(X) ⊆ Follow(A)
– If S is the start symbol then $ ∈ Follow(S)

Prof. Fateman CS 164 Lecture 8 39

Computing Follow Sets (Cont.)

Algorithm sketch:
1. $ ∈ Follow(S)
2. First(β) - {ε} ⊆ Follow(X)

– For each production A → α X β
3. Follow(A) ⊆ Follow(X)

– For each production A → α X β where ε ∈ First(β)

Prof. Fateman CS 164 Lecture 8 40

Follow Sets. Example

• Recall the grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

• Follow sets
Follow(+) = { int, (} Follow(*) = { int, (}
Follow(() = { int, (} Follow(E) = {), $}
Follow(X) = {$,) } Follow(T) = {+,) , $}
Follow()) = {+ ,), $} Follow(Y) = {+,) , $}
Follow(int) = {*, +,) , $}

Prof. Fateman CS 164 Lecture 8 41

Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production A → α in G do:
– For each terminal t ∈ First(α) do

• T[A, t] = α
– If ε ∈ First(α), for each t ∈ Follow(A) do

• T[A, t] = α
– If ε ∈ First(α) and $ ∈ Follow(A) do

• T[A, $] = α

Prof. Fateman CS 164 Lecture 8 42

Computing with Grammars. Step One:
Representing a grammar in Lisp.

(defparameter lect8 ;; here’s one way
'((E -> T X)

(T -> \(E \))
(T -> int Y)
(X -> + T)
(X ->)
(Y -> * T)
(Y ->)))

Prof. Fateman CS 164 Lecture 8 43

Computing some useful information

(defun rhs(r) (cddr r)) ;; e.g. r is (E -> T + E)
(defun lhs(r) (first r))

(defun non-terminals(g) (remove-duplicates (mapcar #'lhs g)))

(defun terminals(g)
(set-difference (reduce #'union (mapcar #'rhs g))

(non-terminals g)))

Prof. Fateman CS 164 Lecture 8 44

Representing sets

(defmacro First (x) ;x is a symbol
`(gethash ,x First))

(defmacro Follow(x) ;x is a symbol
`(gethash ,x Follow))

(defmacro addinto(place stuff)
`(setf ,place (union ,place ,stuff)))

;; alternatively, if we have just one set, like
;; which symbols are nullable, we might just
;; assign (setf nullable ‘())
;; and (push ‘x nullable) ;; to insert x into that set…
;; same as (setf nullable (cons ‘x nullable))
;;; you know this from your lexical analysis program, though..

Prof. Fateman CS 164 Lecture 8 45

Compute Nullable set

;; Compute nullable set of a grammar. The non-terminal symbol X is
;; nullable if X can derive an empty string, X =>..=> .. => empty.
;;Given
;; grammar g, return a lisp list of symbols that are nullable.
(defun nullableset(g)
(let ((nullable nil)

(changed? t))
(while changed?

(setf changed? nil)
(dolist (r g) ; for each rule
(cond
;; if X is already nullable, do nothing.
((member (lhs r) nullable) nil)
;; for each rule (X -> A B C),
;; X is nullable if every one of A, B, C is nullable
((every #'(lambda(z)(member z nullable))(rhs r))
(push (lhs r) nullable)
(setf changed? t)))))

(sort nullable #'string<))) ;sort to make it look nice

See firstfoll.cl for details

Prof. Fateman CS 164 Lecture 8 46

Compute Firstset

(defun firstset(g);; g is a list of grammar rules
(let ((First (make-hash-table)) ;; First is a hashtable, in addition

to a relation First[x]
(nullable (nullableset g))
(changed? t))

;; for each terminal symbol j, First[j] = {j}
(dolist (j (terminals g))

(setf (First j)(list j)))
(while changed?

(setf changed? nil)
(dolist (r g)
;; for each rule in the grammar X -> A B C
...see next slide...
;; did this First set or any other First set
;; change in this run?
(setf changed? (or changed? (< setsize (length (First X)))))))

) ; exit from loop
First))

See firstfoll.cl for details

Prof. Fateman CS 164 Lecture 8 47

(defun firstset(g);; g is a list of grammar rules
(let ((First (make-hash-table)) ;; First is a hashtable, in addition to a

relation First[x]
(nullable (nullableset g))
(changed? t))

;; for each terminal symbol j, First[j] = {j}
(dolist (j (terminals g))
(setf (First j)(list j)))

(while changed?
(setf changed? nil)
(dolist (r g)
;; for each rule in the grammar X -> A B C

(let* ((X (lhs r))
(RHS (rhs r))
(setsize (length (First X))))

;; First[X]= First[X] U First[A]
(cond ((null RHS) nil)

(t (addinto (First X)(First (car RHS)))))
(while (member (car RHS) nullable)

(pop RHS)
(addinto (First X)(First (car RHS))
))

;end of inner while
;; did this First set or any other First set
;; change in this run?
(setf changed? (or changed? (< setsize (length (First X)))))))

) ; exit from loop
First))

Prof. Fateman CS 164 Lecture 8 48

Followset in Lisp

((defun followset(g);; g is a list of grammar rules

(let ((First (firstset g))
(Follow (make-hash-table))
(nullable (nullableset g))
(changed? t))

(while
changed?
(setf changed? nil)
(dolist (r g)

;; for each rule in the grammar X -> A B C D
;;(format t "~%rule is ~s" r)
(do ((RHS (rhs r)(cdr RHS)))

;; test to end the do loop
((null RHS) 'done)

;; let RHS be, in succession,
;; (A B C D)
;; (B C D)
;; (C D)
;; (D)
(if (null RHS) nil ;; no change in follow set for erasing rule
(let* ((A (car RHS))

(Blist (cdr RHS)) ; e.g. (B C D)
(Asize (length (Follow A))))

(if(every #'(lambda(z)(member z nullable)) Blist)
;; X -> A <nullable> ... then anything
….more

See firstfoll.cl for details

Prof. Fateman CS 164 Lecture 8 49

Followset in Lisp, continuedSee firstfoll.cl for details

((defun followset(g);; g is a list of grammar rules

;;;; . . .

(if(every #'(lambda(z)(member z nullable)) Blist)
;; X -> A <nullable> ... then anything
;; following X can follow A:
;; Follow[A] = Follow[A] U Follow[X]
(addinto (Follow A)(Follow (lhs r))))

(if Blist ;not empty
;; Follow[A]= Follow[A] U First[B]
(addinto (Follow A)(First (car Blist))))

(while (and Blist (member (car Blist) nullable))
;;false when Blist =()
;; if X -> A B C and B is nullable, then
;;Follow[A]=Follow[A] U First(C)

(pop Blist)
(addinto (Follow A)(First (car Blist))))

(setf changed? (or changed? (< Asize (length (Follow A))))))))))

;; Remove the terminal symbols in Follow table
;; are uninteresting
;; Return the hashtable "Follow" which has pairs like <X (a b)>.
(mapc #'(lambda(v)(remhash v Follow)) (terminals g))
;;(printfols Follow) ; print the table for human consumption
Follow ; for further processing

))

Prof. Fateman CS 164 Lecture 8 50

Predictive parsing table

(pptab lect8)

First Sets
symbol First

((
))
* *
+ +
E (int
T (int
X +
Y *
int int

Follow Sets
symbol Follow

E)
T) +
X)
Y) +

Prof. Fateman CS 164 Lecture 8 51

Predictive parsing table

(ht2grid(pptab lect8))
rows = (E T X Y), cols= (|(| |)| * + int)

() * + int

E |E -> T X | | | |E -> T X
T |T -> (E) | | | |T -> int Y
X | |X -> | |X -> + T |
Y | |Y -> |Y -> * T |Y

Prof. Fateman CS 164 Lecture 8 52

Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not LL(1)
– If G is ambiguous
– If G is left recursive
– If G is not left-factored
– And in other cases as well

• Most programming language grammars are not LL(1),
but could be made so with a little effort.

• Firstfoll.cl builds an LL(1) parser. About 140 lines of
Lisp code. (With comments, debugging code, test data,
the file is about 550 lines)

Prof. Fateman CS 164 Lecture 8 53

Review

• For some grammars / languages there is a
simple parsing strategy based on recursive
descent. It even can be automated:
Predictive parsing

• Next: a more powerful parsing strategy

	Top-Down Parsing
	Announcements…
	Review
	Lecture Outline
	Intro to Top-Down Parsing
	Recursive Descent Parsing
	Recursive Descent Parsing: Parsing S
	Recursive Descent Parsing: Parsing L
	Recursive Descent Parsing : parsing E
	Recursive Descent Parsing : utilities
	Recursive Descent Parsing : tests
	This grammar is very easy. Why?
	Recursive Descent Parsing, “backtracking” Example 2
	Recursive Descent Parsing. Backtracking
	Recursive Descent Parsing. Backtracking
	Recursive Descent Parsing (Backtracking)
	Lookahead makes backtracking unnecessary
	When Recursive Descent Does Not Work
	Elimination of Left Recursion
	More Elimination of Left-Recursion
	General Left Recursion
	Summary of Recursive Descent
	Predictive Parsers: generalizing lookahead
	LL(1) Languages
	Predictive Parsing and Left Factoring
	Left-Factoring Example
	LL(1) Parsing Table Example
	LL(1) Parsing Table Example (Cont.)
	LL(1) Parsing Tables. Errors
	Using Parsing Tables
	LL(1) Parsing Algorithm
	LL(1) Parsing Example
	Constructing Parsing Tables
	Constructing Parsing Tables (Cont.)
	Computing First Sets
	First Sets. Example
	Computing First Sets by Computer
	Computing Follow Sets
	Computing Follow Sets (Cont.)
	Follow Sets. Example
	Constructing LL(1) Parsing Tables
	Computing with Grammars. Step One: Representing a grammar in Lisp.
	Computing some useful information
	Representing sets
	Compute Nullable set
	Compute Firstset
	Followset in Lisp
	Followset in Lisp, continued
	Predictive parsing table
	Predictive parsing table
	Notes on LL(1) Parsing Tables
	Review

