
Prof. Fateman CS 164 Lecture 7 1

More Finite Automata/ Lexical Analysis
/Introduction to Parsing

Lecture 7

Prof. Fateman CS 164 Lecture 7 2

Programming a lexer in Lisp “by hand”

• (actually picked out of comp.lang.lisp when I was
teaching CS164 3 years ago, an example by Kent
Pitman).

• Given a string like "foo+34-bar*g(zz)" we could
separate it into a lisp list of strings:

("foo" "+" "34" …) or we could try for a list of Lisp
symbols like (foo + 34 – bar * g |(| zz |)|
).

Huh? What is |(| ? It is the way lisp prints the symbol
with printname "(" so as to not confuse the Lisp read
program, and humans too.

Prof. Fateman CS 164 Lecture 7 3

Set up some data and predicates

(defvar *whitespace* '(#\Space #\Tab #\Return #\Linefeed))

(defun whitespace? (x) (member x *whitespace*))

(defvar *single-char-ops* '(#\+ #\- #* #\/ #\(#\) #\. #\, #\=))

(defun single-char-op? (x) (member x *single-char-ops*))

Prof. Fateman CS 164 Lecture 7 4

Tokenize function…

(defun tokenize (text) ;; text is a string "ab+cd(x)"

(let ((chars '()) (result '()))

(declare (special chars result)) ;;explain scope

(dotimes (i (length text))

(let ((ch (char text i))) ;;pick out ith character of string

(cond ((whitespace? ch)

(next-token))

((single-char-op? ch)

(next-token)

(push ch chars)

(next-token))

(t

(push ch chars)))))

(next-token)
(nreverse result)))

Prof. Fateman CS 164 Lecture 7 5

Next-token / two versions

(defun next-token () ;;simple version
(declare (special chars result))
(when chars

(push (coerce (nreverse chars) 'string) result)
(setf chars '())))

(defun next-token () ;; this one “parses” integers magically
(declare (special chars result))
(when chars

(let((st (coerce (reverse chars) 'string))) ;keep chars around
to test
(push (if (every #'digit-char-p chars)

(read-from-string st)
(intern st))
result))

(setf chars '())))

Prof. Fateman CS 164 Lecture 7 6

Example

• (tokenize "foo(-)+34") (foo |(| - |)| + 34)

• (Much) more info in file: pitmantoken.cl

• Missing: line/column numbers, 2-char tokens, keyword vs.
identifier distinction. Efficiency here is low (but see
file for how to use hash tables for character types!)

• Also note that Lisp has a programmable read-table so
that its own idea of what delimits a token can be
changed, as well as meanings of every character.

Prof. Fateman CS 164 Lecture 7 7

Introduction to Parsing

Prof. Fateman CS 164 Lecture 7 8

Outline

• Regular languages revisited

• Parser overview

• Context-free grammars (CFG’s)

• Derivations

Prof. Fateman CS 164 Lecture 7 9

Languages and Automata

• Formal languages are very important in CS
– Especially in programming languages

• Regular languages
– The weakest class of formal languages widely used
– Many applications

• We will also study context-free languages

Prof. Fateman CS 164 Lecture 7 10

Limitations of Regular Languages

• Intuition: A finite automaton with N states
that runs N+1 steps must revisit a state.

• Finite automaton can’t remember # of times it
has visited a particular state. No way of
telling how it got here.

• Finite automaton can only use finite memory.
– Only enough to store in which state it is
– Cannot count, except up to a finite limit

• E.g., language of balanced parentheses is not
regular: {(i)i | i > 0}

Prof. Fateman CS 164 Lecture 7 11

Context Free Grammars are more powerful

• Easy to parse balanced parentheses and
similar nested structures

• A good fit for the vast majority of syntactic
structures in programming languages like
arithmetic expressions.

• Eventually we will find constructions that are
not CFG, or are more easily dealt with outside
the parser.

Prof. Fateman CS 164 Lecture 7 12

The Functionality of the Parser

• Input: sequence of tokens from lexer

• Output: parse tree of the program

Prof. Fateman CS 164 Lecture 7 13

Example

• Program Source
if (x < y) a=1; else a=2;

Lex output = parser input (simplified)
IF lpar ID < ID rpar ID = ICONST ; ID=

ICONST ICONST
• Parser output (simplified)

IF-THEN-ELSE

<

ID ID

ASSIGNASSIGN

Prof. Fateman CS 164 Lecture 7 14

Example
• MJSource

if (x<y) a=1; else a=2;
• Actual lex output (from lisp…)
(fstring " if (x<y) a=1; else a=2;")

(if if (1 . 10))
(#\(#\((1 . 12))
(id x (1 . 13))
(#\< #\< (1 . 14))
(id y (1 . 15))
(#\) #\) (1 . 16))
(id a (1 . 18))
(#\= #\= (1 . 19))
(iconst 1 (1 . 20))
(#\; #\; (1 . 21))
(else else (1 . 26)) …

Prof. Fateman CS 164 Lecture 7 15

Example

• MJSource
if (x < y) a=1; else a=2;

• Actual Parser output ; lc = line&column
(If (LessThan (IdentifierExp x) (IdentifierExp y))

(Assign (id a lc) (IntegerLiteral 1))

(Assign (id a lc) (IntegerLiteral 2))))

– Or cleaned up by taking out “extra” stuff …

(If (< x y) (assign a 1)(assign a 2))

Prof. Fateman CS 164 Lecture 7 16

Comparison with Lexical Analysis

Phase Input Output

Lexer Sequence of
characters

Sequence of
tokens

Parser Sequence of
tokens

Parse tree

Prof. Fateman CS 164 Lecture 7 17

The Role of the Parser

• Not all sequences of tokens are programs . . .
• . . . Parser must distinguish between valid and invalid

sequences of tokens
• Some sequences are valid only in some context, e.g.

MJ requires framework.

• We need
– A formal technique G for describing exactly and only the valid

sequences of tokens (i.e. describe a language L(G))
– An “implementation” of a recognizer for L, preferably based

on automatically transforming G into a program. G for
grammar.

Prof. Fateman CS 164 Lecture 7 18

A test framework for trivial MJ line of code

class Test {
public static void main(String[] S){
{ } }}

class fooClass {
public int aMethod(int value) {

int a;
int x;
int y;

if (x<y) a=1; else a=2;
return 0;

}}

Prof. Fateman CS 164 Lecture 7 19

Context-Free Grammars: Why

• Programming language constructs often have
an underlying recursive structure

• An EXPR is EXPR + EXPR , … , or
A statement is if EXPR statement; else

statement , or
while EXPR statement
…

• Context-free grammars are a natural notation
for this recursive structure

Prof. Fateman CS 164 Lecture 7 20

• A CFG consists of
– A set of terminals T
– A set of non-terminals N
– A start symbol S (a non-terminal)
– A set of productions , or PAIRS of N x (N ∪T)*

Assuming X ∈ N
X ε , or
X Y1 Y2 ... Yn where Yi ∈N ∪T

Context-Free Grammars: Abstractly

Prof. Fateman CS 164 Lecture 7 21

Notational Conventions

• In these lecture notes
– Non-terminals are written upper-case
– Terminals are written lower-case
– The start symbol is the left-hand side of the first

production
ε production; vaguely related to same symbol in RE.
X ε means there is a rule by which X can be
replaced by “nothing”

Prof. Fateman CS 164 Lecture 7 22

Examples of CFGs

A fragment of MiniJava

STATE if (EXPR) STATE;

STATE LVAL = EXPR

EXPR id

Prof. Fateman CS 164 Lecture 7 23

Examples of CFGs

A fragment of MiniJava

STATE if (EXPR) STATE;

| LVAL = EXPR

EXPR id

Shorthand notation with |.

Prof. Fateman CS 164 Lecture 7 24

Examples of CFGs (cont.)

Simple arithmetic expression language:

()

E E E
| E + E
| E
| id

→ ∗

Prof. Fateman CS 164 Lecture 7 25

The Language of a CFG

Read productions as replacement rules in
generating sentences in a language:

X Y1 ... Yn
Means X can be replaced by Y1 ... Yn

X ε
Means X can be erased (replaced with empty string)

Prof. Fateman CS 164 Lecture 7 26

Key Idea

1. Begin with a string consisting of the start
symbol “S”

2. Pick a non-terminal X in the string by a right-
hand side of some production e.g. X YZ

…string1 X string2… ⇒ …string1 YZ string2 …

1. Repeat (2) until there are no non-terminals in
the string. i.e. do ⇒*

Prof. Fateman CS 164 Lecture 7 27

The Language of a CFG (Cont.)

More formally, write
X1 …Xi… Xn ⇒ X1 …Xi-1 y1 y2 … ym Xi+1 … Xn
if there is a production

Xi y1 y2 … ym
Note, the double arrow denotes rewriting of

strings is ⇒

Prof. Fateman CS 164 Lecture 7 28

The Language of a CFG (Cont.)

Write u ⇒* v

If u ⇒ … ⇒ v

in 0 or more steps

Prof. Fateman CS 164 Lecture 7 29

The Language of a CFG

Let G be a context-free grammar with start
symbol S. Then the language of G is:

{a1 … an | S ⇒

a1 … an and every ai is a terminal symbol}

Prof. Fateman CS 164 Lecture 7 30

Terminals

Terminals are called that
because there are no rules
for replacing them. (terminated..)

• Once generated, terminals are permanent.

• Terminals ought to be tokens of the language,
numbers, ids, not concepts like “statement”.

Prof. Fateman CS 164 Lecture 7 31

Examples

L(G) is the language of CFG G

Strings of balanced parentheses

A simple grammar:
()S S

S ε
→
→

{ }() | 0i i i ≥

Prof. Fateman CS 164 Lecture 7 32

To be more formal..

• The alphabet Σ for G is { (,)} , the set of two
characters left and right parenthesis. This is the set
of terminal symbols.

• The non-terminal symbols, Ν on the LHS of rules is
here, a set of one element: {S}

• There is one distinguished non-terminal symbol, often
S for “sentence” or “start” which is what you are
trying to recognize.

• And then there is the finite list of rules or
productions, technically a subset of Ν × (Ν∪Σ)∗

Prof. Fateman CS 164 Lecture 7 33

Let’s produce some sentential forms of a
MJgrammar

A fragment of a Tiger grammar:

STATE if (EXPR) STATE ; else STATE
| while EXPR do STATE
| id

→

Prof. Fateman CS 164 Lecture 7 34

MJ Example (Cont.)

Some sentential forms of the language

id
if (expr) state; else state

while id do state;

if if id then id else id then id else id

Prof. Fateman CS 164 Lecture 7 35

Arithmetic Example

Simple arithmetic expressions:

Some elements of the language:

E E+E | E E | (E) | id→ ∗

id id + id
(id) id id
(id) id id (id)

∗
∗ ∗

Prof. Fateman CS 164 Lecture 7 36

Notes

The CFG idea for describing languages is a powerful
concept. Understanding its complexities can solve
many important Programming Language problems.

• Membership in a CFG’s language is “yes” or “no”.
• But to be useful to us, a CFG parser

– Should show how a sentence corresponds to a parse tree.
– Should handle non-sentences gracefully (pointing out likely

errors).
– Should be easy to generate from the grammar specification

“automatically” (e.g., YACC, Bison, JCC, LALR-generator)

Prof. Fateman CS 164 Lecture 7 37

More Notes

• Form of the grammar is important
– Different grammars can generate the identical

language
– Tools are sensitive to the form of the grammar
– Restrictions on the types of rules can make

automatic parser generation easier

Prof. Fateman CS 164 Lecture 7 38

Simple grammar (3.1 in text)

1: S S ; S

2: S id := E

3: S print (L)

4: E id

5: E num

6: E E + E

7: E (S , E)

8: L E

9: L L , E

Prof. Fateman CS 164 Lecture 7 39

Derivations and Parse Trees

A derivation is a sequence of sentential forms
starting with S, rewriting one non-terminal
each step. A left-most derivation rewrites the
left-most non-terminal.

S
id := E
id := E + E
id := num + E
id := num + num

Using rules
2
6
5
5

The sequence of rules tells us all we need to know! We
can use it to generate a tree diagram for the sentence.

Prof. Fateman CS 164 Lecture 7 40

Building a Parse Tree

– Start symbol is the tree’s root
– For a production X y1 y2 y3 we draw

y1 y2 y3

X

Prof. Fateman CS 164 Lecture 7 41

Another Derivation Example

• Grammar Rules

• Sentential Form (input to parser)

E E+E | E E | (E) | id→ ∗

id id + id∗

Prof. Fateman CS 164 Lecture 7 42

Derivation Example (Cont.)

E
E+E
E E+E
id E + E
id id + E
id id + id

→
→ ∗
→ ∗
→ ∗
→ ∗

E

E

E E

E+

id*

idid

Prof. Fateman CS 164 Lecture 7 43

Left-Most Derivation in Detail (1)

E

E

Prof. Fateman CS 164 Lecture 7 44

Derivation in Detail (2)

E
E+E→

E

E E+

Prof. Fateman CS 164 Lecture 7 45

Derivation in Detail (3)

E E

E
E+E
E +→ ∗

→

E

E

E E

E+

*

Prof. Fateman CS 164 Lecture 7 46

Derivation in Detail (4)

E
E+E
E E+E
id E + E→ ∗

→
→ ∗

E

E

E E

E+

*

id

Prof. Fateman CS 164 Lecture 7 47

Derivation in Detail (5)

E
E+E
E E+E
id E +
id id +

E
E→ ∗

→
→ ∗
→ ∗

E

E

E E

E+

*

idid

Prof. Fateman CS 164 Lecture 7 48

Derivation in Detail (6)

E
E+E
E E+E
id E + E
id id + E
id id + id

→
→ ∗
→ ∗
→
→ ∗

∗

E

E

E E

E+

id*

idid

Prof. Fateman CS 164 Lecture 7 49

Notes on Derivations

• A parse tree has
– Terminals at the leaves
– Non-terminals at the interior nodes

• An in-order traversal of the leaves is the
original input

• The parse tree shows the association of
operations, even if the input string does not

Prof. Fateman CS 164 Lecture 7 50

What is a Right-most Derivation?

• Our examples were left-
most derivations
– At each step, replace the

left-most non-terminal

• There is an equivalent
notion of a right-most
derivation

E
E+E
E+id
E E + id
E id + id
id id + id

→
→
→ ∗
→ ∗
→ ∗

Prof. Fateman CS 164 Lecture 7 51

Right-most Derivation in Detail (1)

E

E

Prof. Fateman CS 164 Lecture 7 52

Right-most Derivation in Detail (2)

E
E+E→

E

E E+

Prof. Fateman CS 164 Lecture 7 53

Right-most Derivation in Detail (3)

id

E
E+E
E+→

→

E

E E+

id

Prof. Fateman CS 164 Lecture 7 54

Right-most Derivation in Detail (4)

E
E+E
E+id
E E + id

→

∗
→
→

E

E

E E

E+

id*

Prof. Fateman CS 164 Lecture 7 55

Right-most Derivation in Detail (5)

E
E+E
E+id
E E
E

+ id
id + id

→
→
→

∗
∗

→

E

E

E E

E+

id*

id

Prof. Fateman CS 164 Lecture 7 56

Right-most Derivation in Detail (6)

E
E+E
E+id
E E + id
E id + id
id id + id→ ∗

→
→
→ ∗
→ ∗

E

E

E E

E+

id*

idid

Prof. Fateman CS 164 Lecture 7 57

Derivations and Parse Trees

• Note that right-most and left-most
derivations have the same parse tree

• The difference is the order in which branches
are added

Prof. Fateman CS 164 Lecture 7 58

Summary: Objectives of Parsing

• We are not just interested in whether
s ∈ L(G)

– We need a parse tree for s

• A derivation defines a parse tree
– But one parse tree may have many derivations

• Left-most and right-most derivations are
important in parser implementation

Prof. Fateman CS 164 Lecture 7 59

Question from 9/21: grammar for /* */

• The simplest way of handling this is to write a
program to just suck up characters looking for */, and
“count backwards”.

• Here’s an attempt at a grammar
• C / *A * /
• C / * A C A * /
• A1 a | b | c | 0 |…9 | … all chars not /
• B1 a | b | c | 0 |…9 | … all chars not *
• A A B1 | A1 B1 A B1 A1 | ε
• --To make this work, you’d need to have a grammar

that covered both “real programs” and comments
concatenated.

	More Finite Automata/ Lexical Analysis /Introduction to Parsing
	Programming a lexer in Lisp “by hand”
	Set up some data and predicates
	Tokenize function…
	Next-token / two versions
	Example
	Introduction to Parsing
	Outline
	Languages and Automata
	Limitations of Regular Languages
	Context Free Grammars are more powerful
	The Functionality of the Parser
	Example
	Example
	Example
	Comparison with Lexical Analysis
	The Role of the Parser
	A test framework for trivial MJ line of code
	Context-Free Grammars: Why
	
	Notational Conventions
	Examples of CFGs
	Examples of CFGs
	Examples of CFGs (cont.)
	The Language of a CFG
	Key Idea
	The Language of a CFG (Cont.)
	The Language of a CFG (Cont.)
	The Language of a CFG
	Terminals
	Examples
	To be more formal..
	Let’s produce some sentential forms of a MJgrammar
	MJ Example (Cont.)
	Arithmetic Example
	Notes
	More Notes
	Simple grammar (3.1 in text)
	Derivations and Parse Trees
	Building a Parse Tree
	Another Derivation Example
	Derivation Example (Cont.)
	Left-Most Derivation in Detail (1)
	Derivation in Detail (2)
	Derivation in Detail (3)
	Derivation in Detail (4)
	Derivation in Detail (5)
	Derivation in Detail (6)
	Notes on Derivations
	What is a Right-most Derivation?
	Right-most Derivation in Detail (1)
	Right-most Derivation in Detail (2)
	Right-most Derivation in Detail (3)
	Right-most Derivation in Detail (4)
	Right-most Derivation in Detail (5)
	Right-most Derivation in Detail (6)
	Derivations and Parse Trees
	Summary: Objectives of Parsing
	Question from 9/21: grammar for /* */

