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/Introduction to Parsing
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Programming a lexer in Lisp “by hand”

• (actually picked out of comp.lang.lisp when I was 
teaching CS164 3 years ago, an example by Kent 
Pitman).

• Given a string like "foo+34-bar*g(zz)" we could 
separate it into a lisp list of strings:

("foo" "+" "34" …) or we could  try for a list of Lisp 
symbols like (foo + 34 – bar * g |(| zz |)| 
).

Huh? What is |(| ?  It is the way lisp prints the symbol 
with printname "(" so as to not confuse the Lisp read 
program, and humans too.
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Set up some data and predicates

(defvar *whitespace* '(#\Space #\Tab #\Return #\Linefeed))

(defun whitespace? (x) (member x *whitespace*))

(defvar *single-char-ops* '(#\+ #\- #\* #\/ #\( #\) #\. #\, #\=))

(defun single-char-op? (x) (member x *single-char-ops*))
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Tokenize function…

(defun tokenize (text) ;; text is a string "ab+cd(x)"

(let ((chars '()) (result '()))

(declare (special chars result)) ;;explain scope

(dotimes (i (length text))

(let ((ch (char text i))) ;;pick out ith character of string

(cond ((whitespace? ch) 

(next-token))

((single-char-op? ch) 

(next-token)

(push ch chars)

(next-token))

(t

(push ch chars)))))

(next-token)
(nreverse result)))
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Next-token / two versions

(defun next-token () ;;simple version
(declare (special chars result))
(when chars 

(push (coerce (nreverse chars) 'string) result)
(setf chars '())))

(defun next-token () ;; this one “parses” integers magically
(declare (special chars result))
(when chars 

(let((st (coerce (reverse chars) 'string))) ;keep chars around 
to test
(push (if (every #'digit-char-p chars)

(read-from-string st)
(intern st))
result))

(setf chars '())))
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Example

• (tokenize "foo(-)+34")  (foo |(| - |)| + 34)

• (Much) more info in file: pitmantoken.cl

• Missing: line/column numbers, 2-char tokens, keyword vs. 
identifier distinction. Efficiency here is low (but see 
file for how to use hash tables for character types!)

• Also note that Lisp has a programmable read-table so 
that its own idea of what delimits a token can be 
changed, as well as meanings of every character.
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Introduction to Parsing
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Outline

• Regular languages revisited

• Parser overview

• Context-free grammars (CFG’s)

• Derivations
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Languages and Automata

• Formal languages are very important in CS
– Especially in programming languages

• Regular languages
– The weakest class of formal languages widely used
– Many applications

• We will also study context-free languages
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Limitations of Regular Languages

• Intuition: A finite automaton with N states 
that runs N+1 steps must revisit a state.

• Finite automaton can’t remember # of times it 
has visited a particular state. No way of 
telling how it got here.

• Finite automaton can only use finite memory.
– Only enough to store in which state it is  
– Cannot count, except up to a finite limit

• E.g., language of balanced parentheses is not 
regular: {(i )i | i > 0}
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Context Free Grammars are more powerful

• Easy to parse balanced parentheses and 
similar nested structures

• A good fit for the vast majority of syntactic 
structures in programming languages like 
arithmetic expressions.

• Eventually we will find constructions that are 
not CFG, or are more easily dealt with outside 
the parser.
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The Functionality of the Parser

• Input: sequence of tokens from lexer

• Output: parse tree of the program
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Example

• Program Source
if (x < y) a=1; else a=2;

Lex output = parser input (simplified)
IF  lpar ID < ID  rpar ID = ICONST ; ID=  

ICONST  ICONST
• Parser output (simplified)

IF-THEN-ELSE

<

ID ID

ASSIGNASSIGN
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Example
• MJSource

if (x<y) a=1; else a=2;
• Actual lex output  (from lisp…)
(fstring "        if (x<y) a=1; else a=2;") 

(if if (1 . 10)) 
(#\( #\( (1 . 12)) 
(id x (1 . 13)) 
(#\< #\< (1 . 14)) 
(id y (1 . 15)) 
(#\) #\) (1 . 16)) 
(id a (1 . 18)) 
(#\= #\= (1 . 19)) 
(iconst 1 (1 . 20)) 
(#\; #\; (1 . 21)) 
(else else (1 . 26)) …
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Example

• MJSource
if (x < y) a=1; else a=2;

• Actual Parser output  ; lc = line&column
(If (LessThan (IdentifierExp x) (IdentifierExp y))

(Assign (id a lc) (IntegerLiteral 1))

(Assign (id a lc) (IntegerLiteral 2))))

– Or cleaned up by taking out “extra” stuff …

(If (< x y) (assign a 1)(assign a 2))
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Comparison with Lexical Analysis

Phase Input Output

Lexer Sequence of 
characters

Sequence of 
tokens

Parser Sequence of 
tokens

Parse tree
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The Role of the Parser

• Not all sequences of tokens are programs . . .
• . . . Parser must distinguish between valid and invalid 

sequences of tokens
• Some sequences are valid only in some context, e.g. 

MJ requires framework.

• We need
– A formal technique G for describing exactly and only the valid 

sequences of tokens  (i.e. describe a language L(G))
– An “implementation” of a recognizer for L, preferably based 

on automatically transforming G into a program.  G for 
grammar.
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A test framework for trivial MJ line of code

class Test {
public static void main(String[ ] S){
{   }   }}

class fooClass {
public int aMethod(int value) {

int a;
int x;
int y;

if (x<y) a=1; else a=2;
return 0;

}}
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Context-Free Grammars: Why

• Programming language constructs often have 
an underlying recursive structure

• An EXPR is EXPR + EXPR  , … , or
A statement is if EXPR  statement; else 

statement                                , or
while EXPR  statement
…

• Context-free grammars are a natural notation 
for this recursive structure
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• A CFG consists of
– A set of terminals T
– A set of non-terminals N
– A start symbol S (a non-terminal)
– A set of productions , or PAIRS of  N x (N ∪T)*

Assuming X  ∈ N
X ε , or         
X Y1 Y2 ... Yn where   Yi ∈N ∪T

Context-Free Grammars: Abstractly
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Notational Conventions

• In these lecture notes
– Non-terminals are written upper-case
– Terminals are written lower-case
– The start symbol is the left-hand side of the first 

production
ε  production; vaguely related to same symbol in RE.  
X ε means there is a rule by which X can be 
replaced by “nothing”
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Examples of CFGs

A fragment of MiniJava

STATE if ( EXPR )   STATE; 

STATE LVAL = EXPR

EXPR id



Prof. Fateman  CS 164  Lecture 7 23

Examples of CFGs

A fragment of MiniJava

STATE if ( EXPR )   STATE; 

|  LVAL = EXPR

EXPR id

Shorthand notation with |. 
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Examples of CFGs (cont.)

Simple arithmetic expression language:

( )

E E  E
| E + E
| E
| id

→ ∗
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The Language of a CFG

Read productions as replacement rules in 
generating sentences in a language:

X Y1 ... Yn
Means X can be replaced by Y1 ... Yn

X ε
Means X can be erased (replaced with empty string)
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Key Idea

1. Begin with a string consisting of the start 
symbol “S”

2. Pick a non-terminal X in the string by a right-
hand side of some production e.g. X YZ

…string1 X string2… ⇒ …string1 YZ string2 …

1. Repeat (2) until there are no non-terminals in 
the string.  i.e. do  ⇒*
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The Language of a CFG (Cont.)

More formally, write
X1 …Xi… Xn ⇒ X1 …Xi-1 y1 y2 … ym Xi+1 … Xn
if there is a production

Xi y1 y2 … ym
Note, the double arrow denotes rewriting of 

strings  is  ⇒
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The Language of a CFG (Cont.)

Write  u  ⇒* v

If u  ⇒ … ⇒ v  

in 0 or more steps
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The Language of a CFG

Let G be a context-free grammar with start 
symbol S. Then the language of G is:

{a1 … an | S ⇒

a1 … an and every ai is a terminal symbol}
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Terminals

Terminals are called that 
because there are no rules 
for replacing them. (terminated..)

• Once generated, terminals are permanent.

• Terminals ought to be tokens of the language, 
numbers, ids, not concepts like “statement”.  
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Examples

L(G) is the language of CFG G

Strings of balanced parentheses

A simple  grammar:
( )S S

S ε
→
→

{ }( ) | 0i i i ≥
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To be more formal..

• The alphabet Σ for G is  { ( , )} , the set of two 
characters  left and right parenthesis. This is the set 
of terminal symbols.

• The non-terminal symbols, Ν on the LHS of rules is 
here, a set of one element: {S}

• There is one distinguished non-terminal symbol, often 
S  for “sentence” or “start” which is what you are 
trying to recognize.

• And then there is the finite list of rules or 
productions, technically a subset of  Ν × (Ν∪Σ)∗
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Let’s produce some sentential forms of a 
MJgrammar

A fragment of a Tiger grammar:

STATE         if  ( EXPR )  STATE  ; else STATE
| while EXPR do STATE
| id

→
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MJ Example (Cont.)

Some sentential forms of the language

id
if (expr) state; else state

while id do state;

if if id then id else id then id else id
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Arithmetic Example

Simple arithmetic expressions:

Some elements of the language:

E E+E | E E | (E) | id→ ∗

id id + id
(id) id  id
(id)  id id  (id)

∗
∗ ∗
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Notes

The CFG idea for describing languages is a powerful 
concept. Understanding its complexities can solve 
many important Programming Language problems.

• Membership in a CFG’s language is “yes” or “no”.
• But to be useful to us, a CFG parser

– Should show how a sentence corresponds to a parse tree.
– Should handle non-sentences gracefully (pointing out likely 

errors). 
– Should be easy to generate from the grammar specification 

“automatically” (e.g., YACC, Bison, JCC, LALR-generator)
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More Notes

• Form of the grammar is important
– Different grammars can generate the identical 

language
– Tools are sensitive to the form of the grammar
– Restrictions on the types of rules can make 

automatic parser generation easier
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Simple grammar  (3.1 in text)

1:  S S ; S

2:  S id := E

3:  S print (L)

4:  E id

5:  E num

6:  E E + E

7:  E (S , E)

8:  L E

9:  L L , E
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Derivations and Parse Trees

A derivation is a sequence of sentential forms 
starting with S, rewriting one non-terminal 
each step. A left-most derivation rewrites the 
left-most non-terminal.

S
id := E
id := E + E
id := num + E
id := num + num

Using rules 
2
6
5
5

The sequence of rules tells us all we need to know! We 
can use it to generate a tree diagram for the sentence.
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Building a Parse Tree

– Start symbol is the tree’s root
– For a production   X y1 y2 y3 we draw

y1 y2 y3

X
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Another Derivation Example

• Grammar Rules

• Sentential Form (input to parser)

E E+E | E E | (E) | id→ ∗

id  id + id∗
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Derivation Example (Cont.)

E
E+E
E E+E
id E + E
id id + E
id id + id

→
→ ∗
→ ∗
→ ∗
→ ∗

E

E

E E

E+

id*

idid
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Left-Most Derivation in Detail (1)

E

E
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Derivation in Detail (2)

E
E+E→

E

E E+
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Derivation in Detail (3)

E E

E
E+E
E +→ ∗

→

E

E

E E

E+

*
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Derivation in Detail (4)

E
E+E
E E+E
id E + E→ ∗

→
→ ∗

E

E

E E

E+

*

id
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Derivation in Detail (5)

E
E+E
E E+E
id E + 
id id + 

E
E→ ∗

→
→ ∗
→ ∗

E

E

E E

E+

*

idid
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Derivation in Detail (6)

E
E+E
E E+E
id E + E
id id + E
id id + id

→
→ ∗
→ ∗
→
→ ∗

∗

E

E

E E

E+

id*

idid
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Notes on Derivations

• A parse tree has
– Terminals at the leaves
– Non-terminals at the interior nodes

• An in-order traversal of the leaves is the 
original input

• The parse tree shows the association of 
operations, even if the input string does not
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What is a Right-most Derivation?

• Our examples were left-
most derivations
– At each step, replace the 

left-most non-terminal

• There is an equivalent 
notion of a right-most 
derivation

E
E+E
E+id
E E + id
E id + id
id id + id

→
→
→ ∗
→ ∗
→ ∗
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Right-most Derivation in Detail (1)

E

E
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Right-most Derivation in Detail (2)

E
E+E→

E

E E+
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Right-most Derivation in Detail (3)

id

E
E+E
E+→

→

E

E E+

id
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Right-most Derivation in Detail (4)

E
E+E
E+id
E E + id

→

∗
→
→

E

E

E E

E+

id*
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Right-most Derivation in Detail (5)

E
E+E
E+id
E E 
E

+ id
id + id

→
→
→

∗
∗

→

E

E

E E

E+

id*

id
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Right-most Derivation in Detail (6)

E
E+E
E+id
E E + id
E id + id
id id + id→ ∗

→
→
→ ∗
→ ∗

E

E

E E

E+

id*

idid
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Derivations and Parse Trees

• Note that right-most and left-most 
derivations have the same parse tree

• The difference is the order in which branches 
are added
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Summary: Objectives of Parsing

• We are not just interested in whether              
s ∈ L(G)

– We need a parse tree for s

• A derivation defines a parse tree
– But one parse tree may have many derivations

• Left-most and right-most derivations are 
important in parser implementation
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Question from 9/21: grammar for /* */

• The simplest way of handling this is to write a 
program to just suck up characters looking for */, and 
“count backwards”.

• Here’s an attempt at a grammar
• C / *A  * /
• C / * A C A * /
• A1 a | b | c | 0 |…9 |   … all chars not / 
• B1 a | b | c | 0 |…9 |   … all chars not * 
• A A B1 | A1 B1 A B1 A1  | ε
• --To make this work, you’d need to have a grammar 

that covered both “real programs” and comments 
concatenated.
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