
Prof. Fateman CS 164 Lecture 6 1

Implementation of Regular Expression
Recognizers

CS164
Lecture 6

Prof. Fateman CS 164 Lecture 6 2

Outline

• Testing for membership in a “regular” language.
• Specifying lexical structure using regular expressions.

A FORMAL high-level approach.
• Could be automatically programmed from spec.

• Finite automata: a “machine” description
– Deterministic Finite Automata (DFAs)
– Non-deterministic Finite Automata (NFAs)
– Implemented in software (but could be in hardware!)

• Implementation of regular expressions as programs
RegExp => NFA => DFA => Tables or programs

Prof. Fateman CS 164 Lecture 6 3

Common Notational Extensions

• There are various extensions used in regular
expression notation; this uses up more meta
characters but we can generally manage it by
escape/quotes when we need them...

• Union: A | B ≡ A + B
• Optional: A + ε ≡ A?
• Sequence: A B ≡ A B
• Kleene Star: A* ≡ A*
• Parens used for grouping: (A+B)C ≡ AC+BC
• Range: ‘a’+’b’+…+’z’ ≡ [a-z]
• Excluded range:

complement of [a-z] ≡ [^a-z]

Prof. Fateman CS 164 Lecture 6 4

Examples of REs

• R := (0+1)*ab*a
• S := [a-z]([a-z]+[0-9])*

• Described in English:
• an element of R starts optionally with a string of any

combination of the digits 0 or 1 of any length,
followed by exactly one a then optionally some number
of b characters and then an a.

• What is S?

Prof. Fateman CS 164 Lecture 6 5

Let’s get real

• Do we want yet another language to parse, the
language of regular expressions, where A|BC
has to be disambiguated? {Is this (A|B)C or
A|(BC) ? Is ab* the same as (ab)* or a(b*)? }

• What a mathematician can complicate with
notation, we can make more easily constructive
by using computer notation.

• What notation is that??

Prof. Fateman CS 164 Lecture 6 6

Notation extensions

• We can use lisp…
• Union: A | B ≡ (union A B)
• Option: A + ε ≡ (union A eps)
• Range: ‘a’+’b’+…+’z’ ≡ alphachar
• Sequence: A B ≡ (seq A B)
• Kleene Star: A* ≡ (star A)
• Excluded range:

complement of A ≡ (not A)

Prof. Fateman CS 164 Lecture 6 7

Notation extensions

Examples in lisp

• (0+1)*(ab*a).
– (seq (star(union 0 1))(seq a (star b) a))
– (seq (star(union 0 1)) a (star b) a)

• [a-z]([a-z]+[0-9])*
– (seq alphachar (star (union alphachar digitchar)))

Prof. Fateman CS 164 Lecture 6 8

Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate
s ∈ L(R)

• But a yes/no answer is not enough !
• Instead: we want to partition the input into

tokens.

• Tradition is to write an algorithm based on
partitioning by regular expressions.

Prof. Fateman CS 164 Lecture 6 9

Regular Expressions => Lexical Spec. (1)

1. Select a set of tokens
• Number, Keyword, Identifier, ...

2. Write a rexp for the lexemes of each token
• Number = digit+

• Keyword = ‘if’ + ‘else’ + …
• Identifier = letter (letter + digit)*
• OpenPar = ‘(‘
• …

Prof. Fateman CS 164 Lecture 6 10

Regular Expressions => Lexical Spec. (2)

3. Construct R, matching all lexemes for all
tokens (and a pattern for everything else..)

R = Keyword + Identifier + Number + …
= R1 + R2 + … + Rn=rathole

Facts: If s∈ L(R) then s is a lexeme
– Furthermore s∈ L(Ri) for some “i”
– This “i” determines the token that is reported

Prof. Fateman CS 164 Lecture 6 11

Regular Expressions => Lexical Spec. (3)

4. Let input be x1…xn , a SEQUENCE of CHARS
• (x1 ... xn are individual characters)
• For 1 ≤ k ≤ n check

x1…xk ∈ L(R) ?

5. It must be that
x1…xk ∈ L(Rj) for some j , so it is a type-j token
Remove x1…xk from input and go to (4)

Prof. Fateman CS 164 Lecture 6 12

How to Handle Spaces and Comments?

1. We could create a token Whitespace
Whitespace = (‘ ’ + ‘\n’ + ‘\t’)+

– We could also add comments in there
– An input “ \t\n 5555 “ is transformed into

Whitespace Integer Whitespace
2. Alternatively, Lexer skips spaces (preferred)

• Modify step 5 from before as follows:
It must be that xk ... xi − L(Rj) for some j such
that x1 ... xk-1 − L(Whitespace)

• Parser is not bothered with (extra) spaces

Prof. Fateman CS 164 Lecture 6 13

Ambiguities (1)

• There are ambiguities in the algorithm

• How much input is used? What if
• x1…xi ∈ L(R) and also
• x1…xK ∈ L(R) for k>i

– One possible Rule: Pick the longest possible
substring

– The “maximal munch”

Prof. Fateman CS 164 Lecture 6 14

Ambiguities (2)

• Which token is used? What if
• x1…xi ∈ L(Rj) and also
• x1…xi ∈ L(Rk)

– Another possible rule: use rule listed first (j if j < k)

• Example:
– R1 = Keyword and R2 = Identifier
– “if” matches both.
– Treats “if” as a keyword not an identifier (many languages

just tell user: don’t use keyword as identifier.)

Prof. Fateman CS 164 Lecture 6 15

Error Handling

• What if
No rule matches a prefix of input ?

• Problem: Can’t just get stuck …
• Solution:

– Write a rule matching all “bad” strings
– Put it last (remember, Rn = rathole…)

• Lexer tools allow the writing of:
R = R1 + ... + Error
– Token Error matches if nothing else matches

Prof. Fateman CS 164 Lecture 6 16

Summary

• Regular expressions provide a concise notation
for string patterns

• Use in lexical analysis requires small
extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known (e.g. r.e. lexer)
– Require only single pass over the input
– Few operations per character (table lookup)

Prof. Fateman CS 164 Lecture 6 17

Finite Automata

• Regular expressions = specification
• Finite automata = closer to implementation
• ---(Singular: automaton. Plural: automata.)
• A finite automaton or (D)FA is an abstraction

consisting of
– An input alphabet Σ
– A set of states S
– A start state n
– A set of accepting states F ⊆ S
– A set of transitions state1 →input state2

Prof. Fateman CS 164 Lecture 6 18

Finite Automata

• Transition
s1 →a s2

• Is read
In state s1 on input a go to state s2

• If end of input (or no transition possible)
– If in accepting state => accept
– Otherwise => reject

Prof. Fateman CS 164 Lecture 6 19

Finite Automata State Graphs

• A state

• The start state

• An accepting state

a

• A transition

Prof. Fateman CS 164 Lecture 6 20

A Simple Example

• A finite automaton that accepts only “1”

1

Prof. Fateman CS 164 Lecture 6 21

Another Simple Example

• A finite automaton accepting any number of 1’s
followed by a single 0

• Alphabet: {0,1}; as a RegExp: 1*0

1

0

Prof. Fateman CS 164 Lecture 6 22

And Another Example

• Alphabet {0,1}
• What language does this recognize?

0
1

1
1

00

Prof. Fateman CS 164 Lecture 6 23

And Another Example

• Alphabet still { 0, 1 }

• The operation of the automaton is not
completely defined by the input
– On input “11” the automaton could be in either state

1
1

Prof. Fateman CS 164 Lecture 6 24

Epsilon Moves

• Another kind of transition: ε-moves
ε

A B

• Machine can move from state A to state B
without reading input. Which state is it really
in?

Prof. Fateman CS 164 Lecture 6 25

Deterministic and Nondeterministic Automata

• Deterministic Finite Automata (DFA)
– One transition per input per state
– No ε-moves

• Nondeterministic Finite Automata (NFA)
– Can have multiple transitions for one input in a

given state
– Can have ε-moves

• Either kind of finite automaton has finite
memory
– Need only to encode the current state(s)

Prof. Fateman CS 164 Lecture 6 26

Execution of Finite Automata

• A DFA can take only one path through the
state graph
– Completely determined by input

• One could think that NFAs can “choose”
– Whether to make ε-moves
– Which of multiple transitions for a single input to

take
Actually, NFAs do not have free will. It would be

more accurate to say an execution of an NFA marks
“all” choices from a set of states to a new set of
states..

Prof. Fateman CS 164 Lecture 6 27

Acceptance of NFAs

• An NFA can be “in multiple states”

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if at least one of its
current states is a final state

Prof. Fateman CS 164 Lecture 6 28

NFA vs. DFA (1)

• NFAs and DFAs have the same abstract power
to recognize languages. Namely the same set
of regular languages.

• DFAs are easier to implement naively as a
program

• NFAs can always be converted to DFAs

Prof. Fateman CS 164 Lecture 6 29

NFA vs. DFA (2)

• For a given language the NFA can be simpler
than the DFA

0
1

0

0
NFA

0
1

0

1

0

1

DFA

• DFA can be exponentially larger than NFA (n states in
a NFA could require as many as 2n states in a DFA)

Prof. Fateman CS 164 Lecture 6 30

Regular Expressions to Finite Automata

• High-level sketch

NFA

Regular
expressions DFA

Lexical
Specification

Table-driven
Implementation of DFA

Prof. Fateman CS 164 Lecture 6 31

Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
– Notation: NFA for rexp M

M

• For ε
ε

• For input a
a

Prof. Fateman CS 164 Lecture 6 32

Regular Expressions to NFA (2)

• For AB
A Bε

• For A + B

A

B

ε
ε

ε

ε

Prof. Fateman CS 164 Lecture 6 33

Regular Expressions to NFA (3)

• For A*

Aε

ε

ε

Prof. Fateman CS 164 Lecture 6 34

Example of RegExp -> NFA conversion

• Consider the regular expression
(1+0)*1

• The NFA is

ε

1C E
0D F

ε

ε
B

ε

ε
G

ε

ε

ε

A H 1I J

Prof. Fateman CS 164 Lecture 6 35

NFA to DFA. The Trick

• Simulate the NFA
• Each state of DFA

= a non-empty subset of states of the NFA
• Start state

= the set of NFA states reachable through ε-moves
from NFA start state

• Add a transition S →a S’ to DFA iff
– S’ is the set of NFA states reachable from any

state in S after seeing the input a
• considering ε-moves as well

Prof. Fateman CS 164 Lecture 6 36

NFA to DFA. Remark

• An NFA may be “in many states” at one time

• How many different states ?

• If there are N states, the NFA must be in
some subset of those N states

• How many subsets are there (at most)?
– 2N - 1 = finitely many, but usually much more than N

Prof. Fateman CS 164 Lecture 6 37

NFA -> DFA Example

1
0ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H 1I Jε

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1

Prof. Fateman CS 164 Lecture 6 38

Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”
– For every transition Si →a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip to

state Sk

– Very efficient

Prof. Fateman CS 164 Lecture 6 39

Table Implementation of a DFA

S

T

U

0

1

0

10 1

UTU
UTT
UTS
10

inputsstate

Prof. Fateman CS 164 Lecture 6 40

Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools such as
flex.

• But, DFAs can be huge.

• In practice, flex-like tools trade off speed for space
in the choice of NFA and DFA representations.

• Oh, there can be many extra states, and usually are, in
an auto-generated DFA. Can be mechanically reduced
to a minimum number of states, but still may be huge.

Prof. Fateman CS 164 Lecture 6 41

Writing a DFA in Lisp

•
;;; -*- Mode: Lisp; Syntax: Common-Lisp -*-

;;; A simple finite state machine (fsm) simulator
;;; Note FSM is the same as a DFA (deterministic finite automaton).

;;; Reference to MCIJ is "Modern Compiler Implementation in Java"
;;; by Andrew Appel.

;;; First we show a deterministic finite state machine fsm, then a
;;; non-deterministic fsm: nfsm then a version of nfsm allowing
;;; "epsilon" transitions.

;;;First with no data abstractions. We decide on the representation
;;; and program away. The correspondence of (state,input) --> next
;;; state is recorded in an association list, as illustrated below.

(defstruct (state (:type list)) transitions final)
;;first use of defstruct

Prof. Fateman CS 164 Lecture 6 42

Set up Mach1 with 3 states

(setf Mach1 (make-array 3))

;;The first machine, with 3 states we will denote 0,1,2 will be stored
;; in an array called Mach1. This machine accepts (c+d)c* and that's all

(setf (aref Mach1 0) ; initial state
(make-state :transitions

'((#\c 1) ;; if you read a c go to state 1
(#\d 1)) ;; if you read a d go to state 1

;; if you read anything else it is a error
:final nil))

(setf (aref Mach1 1)
(make-state :transitions

'((#\c 1)
(#\d 2))

:final t))

(setf (aref Mach1 2) ;; dead end state. no way out
(make-state :transitions

'((#\c 2) ;
(#\d 2))

:final nil))

c d c

d

c
d

10

2

Prof. Fateman CS 164 Lecture 6 43

FSM program in lisp

;; fsm simulates a deterministic finite state machine.
;; given a state number 0,1,2,... returns t for accept, nil for reject.

(defun fsm (state state-table input)
(cond ((string= input "")

(state-final (aref state-table state)))
(t(let ((trans

(assoc
(elt input 0)
(state-transitions
(aref state-table state)))))

(and trans (fsm (cadr trans) state-table (subseq input
1)))))))

;; that’s all. See file fsm.cl for many fluffed-up abstractions,
;; comments, and extensions to NFA

Prof. Fateman CS 164 Lecture 6 44

Actually, we can write lexers rather simply

• Although RegExps / DFAs/ NFAs are neat,
and we teach them in CS164, we are writing
lexers on digital computers with memory.

• These are more powerful than DFAs.
• An entirely reasonable lexer can be written

using (what amounts to) recursive descent
parsing, (later in course!) but in such a simple
form that it hardly needs explanation.

• If we insist on automated tools, we can
compile patterns into programs simply, too.

Prof. Fateman CS 164 Lecture 6 45

Writing stuff in Lisp

• I’d feel bad if too much of this course is
specifically about details of Lisp (or for that
matter about any particular language)

• But there are features and design issues
raised by how Lisp works.

• Some details are inevitably needed… how to
read, print, stop loops.

• File: readprintrex (mostly text); iterate.cl

Prof. Fateman CS 164 Lecture 6 46

RegExps in Lisp. A recipe for matchers

• Say we want to write a clear metalanguage for
RegExps so we can automatically build specific
recognizer programs. Like flex. But we will
write it in 2 pages of Lisp you can read.

• Step one: Come up with a formal “grammar”
for regexps that can be “parsed”.

• Step two: Write a parser than produces as
output a Lisp program that implements the
recognizer.

Prof. Fateman CS 164 Lecture 6 47

A data language for constructing REs

• “abc” is the language {“abc”}
• stwildcard matches any string. { [a-z,A-Z]*}
• If r1, r2, … rn are REs then so are

– (union r1 r2)
– (star r1)
– (star+ r1)
– (sequence r1 r2 …)
– (assign r1 name) same as r1 with side effect
– (eval r1 expression) same as r1 with eval side

effect

Prof. Fateman CS 164 Lecture 6 48

Important: So far we are talking about data
not operations

• We are not computing union etc etc. We are
merely constructing Lisp lists.

• For example, type '(union "a" "b")
• Or (list ‘union "a" "b")

Prof. Fateman CS 164 Lecture 6 49

The only interesting operations we need are
matching RegExps.

• To match a literal, look for it literally
• To match a sequence, do (and (match r1) (match r2) …)

-- (every #’match ‘(r1 r2 ….))
• To match a union, do (or (match r1) (match r2) …)

continues until one succeeds. – (any #’match ‘(r1 r2 …))
• To match (star r1), in lisp:
• (not (do () ((not (match r1))))) ;;;... restated more

conventionally,
• (loop indefinitely until you find a failure to match r1)

then return true, for all those forms (maybe none)
which matched. Problem with matching (0+1)*01 which
requires backup..

Prof. Fateman CS 164 Lecture 6 50

Here’s the matching program (most of it)

(defun mymatch (x)
(declare (special string index end))
(typecase x

(list ;; either a list or something else
(ecase (car x) ;;test the car for something we know

(sequence (every #'mymatch (cdr x)))
(union (some #'mymatch (cdr x)))
(star (not (do ()((not (mymatch (cadr x)))))))))

;; it is not a list
(t (matchitem x)))

Prof. Fateman CS 164 Lecture 6 51

Here’s the matching program (more of it)

(defun mymatch0 (pat string)
(declare (special string))
(let ((index 0)
(end (length string)))
(declare (special index end))
;; this is not very nice lisp: it uses
;; global "special" variables instead of
;; lexical variables.

(if (and (mymatch pat)(= end index))
'success
`̀(failed after ,index chars))));first use of ` backquote
;;(list 'failed 'after index 'chars) ..

Prof. Fateman CS 164 Lecture 6 52

Here’s the matching program (rest of it)

(defun matchitem (x)
(declare (special index end string))

(cond ((>= index end) nil)
((characterp x) ;match a character
(if (char= x(elt string index)) (incf index) nil))
((stringp x)
(and (string= x (subseq string index (+ index (length x))))

(incf index (length x))))
((eq x '?) (incf index)) ;single character wildcard
((eq x 'alphanumeric) (and

(alphanumericp (elt string index))
(incf index)))

;; generalize this to any predicate
((and (symbolp x)(get x 'chartype))
(and (funcall (get x 'chartype) (elt string index))

))
(t nil)))

Prof. Fateman CS 164 Lecture 6 53

Here’s the matching program (extending it)

(setf (get 'digit 'chartype)
#'(lambda(x)

(and
(member x '(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9))

(incf index))))

;;see matchprog.cl

Prof. Fateman CS 164 Lecture 6 54

What if you don’t like (union r1 r2), (seq r1
r2)? / the META system.. (H. Baker)

• [r1 r2] for sequence
• {r1 r2} for union
• R1$ for Kleene star
• ! For evaluation
• @ for indirect “anything of this type”

defun parse-int (&aux (s +1) d (n 0))
(and
(matchit
[{#\+ [#\- !(setq s -1)] []}
@(digit d) !(setq n (ctoi d))
$[@(digit d) !(setq n (+ (* n 10) (ctoi d)))]])

(* s n)))

Prof. Fateman CS 164 Lecture 6 55

Pragmatic parsing (Prag-Parse.html)

• Mostly this is a tour-de-force of Lisp
programming to show you can do lex/yacc Unix
utilities in a few pages of Lisp. But it also
suggests that with appropriate choice of data
structure and a versatile language, you can
scan/parse a fairly complicated language.

• Rather sophisticated Lisp programming style.

Prof. Fateman CS 164 Lecture 6 56

Simpler program (pitman.cl)

• Taken off comp.lang.lisp newsgroup
• Kent Pitman’s answer to How does one do

lexical analysis in lisp?
• Rather straightforward Lisp programming

style.

Prof. Fateman CS 164 Lecture 6 57

Conclusion: Regular Expression Programs

• Easy to specify lexical structure of typical
language by Regular Expressions.

• Good correspondence between intuition and
implementation

• Automated tools can use the RE specs.
• Next time: more on just seat-of-pants

systematic programming.

	Implementation of Regular Expression Recognizers
	Outline
	Common Notational Extensions
	Examples of REs
	Let’s get real
	Notation extensions
	Notation extensions
	Regular Expressions in Lexical Specification
	Regular Expressions => Lexical Spec. (1)
	Regular Expressions => Lexical Spec. (2)
	Regular Expressions => Lexical Spec. (3)
	How to Handle Spaces and Comments?
	Ambiguities (1)
	Ambiguities (2)
	Error Handling
	Summary
	Finite Automata
	Finite Automata
	Finite Automata State Graphs
	A Simple Example
	Another Simple Example
	And Another Example
	And Another Example
	Epsilon Moves
	Deterministic and Nondeterministic Automata
	Execution of Finite Automata
	Acceptance of NFAs
	NFA vs. DFA (1)
	NFA vs. DFA (2)
	Regular Expressions to Finite Automata
	Regular Expressions to NFA (1)
	Regular Expressions to NFA (2)
	Regular Expressions to NFA (3)
	Example of RegExp -> NFA conversion
	NFA to DFA. The Trick
	NFA to DFA. Remark
	NFA -> DFA Example
	Implementation
	Table Implementation of a DFA
	Implementation (Cont.)
	Writing a DFA in Lisp
	Set up Mach1 with 3 states
	FSM program in lisp
	Actually, we can write lexers rather simply
	Writing stuff in Lisp
	RegExps in Lisp. A recipe for matchers
	A data language for constructing REs
	Important: So far we are talking about data not operations
	The only interesting operations we need are matching RegExps.
	Here’s the matching program (most of it)
	Here’s the matching program (more of it)
	Here’s the matching program (rest of it)
	Here’s the matching program (extending it)
	What if you don’t like (union r1 r2), (seq r1 r2)? / the META system.. (H. Baker)
	Pragmatic parsing (Prag-Parse.html)
	Simpler program (pitman.cl)
	Conclusion: Regular Expression Programs

