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Outline

• Testing for membership in a “regular” language.
• Specifying lexical structure using regular expressions.  

A FORMAL high-level approach.
• Could be automatically programmed from spec.

• Finite automata: a “machine” description
– Deterministic Finite Automata (DFAs)
– Non-deterministic Finite Automata (NFAs)
– Implemented in software (but could be in hardware!)

• Implementation of regular expressions as programs
RegExp => NFA => DFA => Tables or programs 
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Common Notational Extensions

• There are various extensions used in regular 
expression notation; this uses up more meta 
characters but we can generally manage it by 
escape/quotes when we need them...

• Union:    A | B             ≡ A + B
• Optional:  A + ε ≡ A?
• Sequence: A B            ≡ A B
• Kleene Star: A*            ≡ A*
• Parens used for grouping: (A+B)C ≡ AC+BC
• Range: ‘a’+’b’+…+’z’ ≡ [a-z]
• Excluded range:

complement of [a-z]   ≡ [^a-z]
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Examples of REs

• R :=  (0+1)*ab*a
• S := [a-z]([a-z]+[0-9])*

• Described in English: 
• an element of R starts optionally with a string of any 

combination of the digits 0 or 1 of any length, 
followed by exactly one a then optionally some number 
of b characters and then an a.

• What is S? 



Prof. Fateman  CS 164  Lecture 6 5

Let’s get real

• Do we want yet another language to parse, the 
language of regular expressions, where  A|BC 
has to be disambiguated? {Is this (A|B)C or 
A|(BC) ?   Is ab*  the same as (ab)* or a(b*)? }

• What a mathematician can complicate with 
notation, we can make more easily constructive 
by using computer notation.

• What notation is that??
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Notation extensions

• We can use lisp…
• Union:    A | B             ≡ (union A B)
• Option:  A + ε ≡ (union A eps)
• Range: ‘a’+’b’+…+’z’ ≡ alphachar
• Sequence: A B            ≡ (seq A B)
• Kleene Star: A*            ≡ (star A)
• Excluded range:

complement of A   ≡ (not A)
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Notation extensions

Examples  in lisp

• (0+1)*(ab*a).   
– (seq (star(union 0 1))(seq a (star b) a))
– (seq (star(union 0 1)) a (star b) a)

• [a-z]([a-z]+[0-9])*
– (seq alphachar (star (union alphachar digitchar)))



Prof. Fateman  CS 164  Lecture 6 8

Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate   
s ∈ L(R)  

• But a yes/no answer is not enough !
• Instead: we want to partition the input into 

tokens.

• Tradition is to write an algorithm based on 
partitioning by regular expressions. 
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Regular Expressions => Lexical Spec. (1)

1. Select a set of tokens
• Number, Keyword, Identifier, ...

2. Write a rexp for the lexemes of each token
• Number = digit+

• Keyword = ‘if’ + ‘else’ + …
• Identifier = letter (letter + digit)*
• OpenPar = ‘(‘
• …
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Regular Expressions => Lexical Spec. (2)

3. Construct R, matching all lexemes for all 
tokens  (and a pattern for everything else..)

R = Keyword + Identifier + Number + …
= R1 + R2 + … + Rn=rathole

Facts: If s∈ L(R) then s is a lexeme
– Furthermore s∈ L(Ri) for some “i”
– This “i” determines the token that is reported
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Regular Expressions => Lexical Spec. (3)

4. Let input be x1…xn , a SEQUENCE of CHARS
• (x1 ... xn are individual characters)
• For 1 ≤ k ≤ n check

x1…xk ∈ L(R) ?

5. It must be that
x1…xk ∈ L(Rj) for some j  , so it is a type-j token
Remove x1…xk from input and go to (4)
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How to Handle Spaces and Comments?

1. We could create a token Whitespace
Whitespace = (‘ ’ + ‘\n’ + ‘\t’)+

– We could also add comments in there
– An input “    \t\n   5555   “ is transformed into 

Whitespace Integer Whitespace
2. Alternatively, Lexer skips spaces (preferred)

• Modify step 5 from before as follows:
It must be that xk ... xi − L(Rj) for some j such 
that x1 ... xk-1 − L(Whitespace)

• Parser is not bothered with (extra) spaces
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Ambiguities (1)

• There are ambiguities in the algorithm

• How much input is used? What if
• x1…xi ∈ L(R) and also
• x1…xK ∈ L(R) for k>i

– One possible Rule: Pick the longest possible 
substring 

– The “maximal munch”
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Ambiguities (2)

• Which token is used? What if
• x1…xi ∈ L(Rj) and also
• x1…xi ∈ L(Rk)

– Another possible rule: use rule listed first (j if j < k)

• Example:
– R1 = Keyword and R2 = Identifier
– “if” matches both. 
– Treats “if” as a keyword not an identifier (many languages 

just tell user: don’t use keyword as identifier. )



Prof. Fateman  CS 164  Lecture 6 15

Error Handling

• What if
No rule matches a prefix of input ?

• Problem: Can’t just get stuck …
• Solution: 

– Write a rule matching all “bad” strings
– Put it last  (remember, Rn = rathole…)

• Lexer tools allow the writing of:
R = R1 + ...  + Error
– Token Error matches if nothing else matches
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Summary

• Regular expressions provide a concise notation 
for string patterns

• Use in lexical analysis requires small 
extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known (e.g. r.e. lexer)
– Require only single pass over the input
– Few operations per character (table lookup)



Prof. Fateman  CS 164  Lecture 6 17

Finite Automata

• Regular expressions = specification
• Finite automata = closer to implementation
• ---(Singular: automaton. Plural: automata.)
• A finite automaton or (D)FA is an abstraction 

consisting of 
– An input alphabet Σ
– A set of states S
– A start state n
– A set of accepting states F ⊆ S
– A set of transitions     state1 →input state2
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Finite Automata

• Transition
s1 →a s2

• Is read
In state s1 on input a go to state  s2

• If end of input (or no transition possible)
– If in accepting state => accept
– Otherwise => reject 
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Finite Automata State Graphs

• A state

• The start state

• An accepting state

a

• A transition
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A Simple Example

• A finite automaton that accepts only “1”

1
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Another Simple Example

• A finite automaton accepting any number of 1’s 
followed by a single 0

• Alphabet: {0,1};   as a RegExp:  1*0

1

0
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And Another Example

• Alphabet {0,1}
• What language does this recognize?

0
1

1
1

00
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And Another Example

• Alphabet still { 0, 1 }

• The operation of the automaton is not 
completely defined by the input
– On input “11” the automaton could be in either state

1
1
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Epsilon Moves

• Another kind of transition: ε-moves
ε

A B

• Machine can move from state A to state B 
without reading input.  Which state is it really 
in? 
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Deterministic and Nondeterministic Automata

• Deterministic Finite Automata (DFA)
– One transition per input per state
– No ε-moves

• Nondeterministic Finite Automata (NFA)
– Can have multiple transitions for one input in a 

given state
– Can have ε-moves

• Either kind of finite automaton has finite 
memory
– Need only to encode the current state(s)
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Execution of Finite Automata

• A DFA can take only one path through the 
state graph
– Completely determined by input

• One could think that NFAs can “choose”
– Whether to make ε-moves
– Which of multiple transitions for a single input to 

take
Actually, NFAs do not have free will. It would be 

more accurate to say an execution of an NFA marks 
“all” choices from a set of states to a new set of 
states..
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Acceptance of NFAs

• An NFA can be “in multiple states”

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if at least one of its 
current states is a final state
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NFA vs. DFA (1)

• NFAs and DFAs have the same abstract power 
to recognize languages. Namely the same set 
of regular languages.

• DFAs are easier to implement naively as a 
program

• NFAs can always be converted to DFAs
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NFA vs. DFA (2)

• For a given language the NFA can be simpler 
than the DFA

0
1

0

0
NFA

0
1

0

1

0

1

DFA

• DFA can be exponentially larger than NFA (n states in 
a NFA could require as many as 2n states in a DFA)
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Regular Expressions to Finite Automata

• High-level sketch

NFA

Regular
expressions DFA

Lexical
Specification

Table-driven 
Implementation of DFA
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Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
– Notation: NFA for rexp M        

M

• For ε
ε

• For input a
a
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Regular Expressions to NFA (2)

• For AB
A Bε

• For A + B

A

B

ε
ε

ε

ε
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Regular Expressions to NFA (3)

• For A*

Aε

ε

ε
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Example of RegExp -> NFA conversion

• Consider the regular expression
(1+0)*1

• The NFA is

ε

1C E
0D F

ε

ε
B

ε

ε
G

ε

ε

ε

A H 1I J
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NFA to DFA. The Trick

• Simulate the NFA
• Each state of DFA 

= a non-empty subset of states of the NFA
• Start state 

= the set of NFA states reachable through ε-moves 
from NFA start state

• Add a transition S →a S’ to DFA iff
– S’ is the set of NFA states reachable from any

state in S after seeing the input a
• considering ε-moves as well
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NFA to DFA. Remark

• An NFA may be “in many states” at one time

• How many different states ?

• If there are N states, the NFA must be in 
some subset of those N states

• How many subsets are there (at most)?
– 2N - 1 = finitely many, but usually much more than N 
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NFA -> DFA Example

1
0ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H 1I Jε

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1



Prof. Fateman  CS 164  Lecture 6 38

Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”
– For every transition Si →a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip to 

state Sk

– Very efficient
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Table Implementation of a DFA

S

T

U

0

1

0

10 1

UTU
UTT
UTS
10

inputsstate
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Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools such as 
flex.

• But, DFAs can be huge.

• In practice, flex-like tools trade off speed for space 
in the choice of NFA and DFA representations.

• Oh, there can be many extra states, and usually are, in 
an auto-generated DFA. Can be mechanically reduced 
to a minimum number of states, but still may be huge.
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Writing a DFA in  Lisp

•
;;; -*- Mode: Lisp; Syntax: Common-Lisp -*-

;;; A simple finite state machine (fsm) simulator
;;; Note FSM is the same as a DFA (deterministic finite automaton).

;;; Reference to MCIJ is "Modern Compiler Implementation in Java"
;;; by Andrew Appel.

;;; First we show a deterministic finite state machine fsm, then a
;;; non-deterministic fsm: nfsm then a version of nfsm allowing
;;; "epsilon" transitions.

;;;First with no data abstractions. We decide on the representation
;;; and program away.  The correspondence of (state,input) --> next
;;; state is recorded in an association list, as illustrated below.

(defstruct (state (:type list)) transitions final)
;;first use of defstruct
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Set up Mach1 with 3 states

(setf Mach1 (make-array 3)) 

;;The first machine, with 3 states we will denote 0,1,2 will be stored
;; in an array called Mach1.  This machine accepts (c+d)c* and that's all

(setf (aref Mach1 0) ; initial state
(make-state :transitions

'((#\c 1)  ;; if you read a c go to state 1
(#\d 1)) ;; if you read a d go to state 1

;; if you read anything else it is a error
:final nil))

(setf (aref Mach1 1)
(make-state :transitions

'((#\c 1)
(#\d 2))

:final t))

(setf (aref Mach1 2) ;; dead end state. no way out
(make-state :transitions

'( (#\c 2)  ;
(#\d 2))

:final nil))

c d c

d

c 
d

10

2
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FSM program in lisp 

;; fsm simulates a deterministic finite state machine.
;; given a state number 0,1,2,... returns t for accept, nil for reject.

(defun fsm (state state-table input)
(cond ((string= input "") 

(state-final (aref state-table state))) 
(t(let ((trans  

(assoc 
(elt input 0) 
(state-transitions
(aref state-table state)))))

(and trans (fsm (cadr trans) state-table (subseq input 
1)))))))

;; that’s all.  See file fsm.cl for many fluffed-up abstractions,  
;; comments, and extensions to NFA
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Actually, we can write lexers rather simply

• Although RegExps / DFAs/ NFAs are neat, 
and we teach them in CS164, we are writing 
lexers on digital computers with memory.

• These are more powerful than DFAs.
• An entirely reasonable lexer can be written 

using (what amounts to) recursive descent 
parsing, (later in course!) but in such a simple 
form that it hardly needs explanation.

• If we insist on automated tools, we can 
compile patterns into programs simply, too. 
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Writing stuff in Lisp 

• I’d feel bad if too much of this course is 
specifically about details of Lisp (or for that 
matter about any particular language)

• But there are features and design issues 
raised by how Lisp works. 

• Some details are inevitably needed… how to 
read, print, stop loops.

• File: readprintrex (mostly text); iterate.cl
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RegExps in Lisp. A recipe for matchers

• Say we want to write a clear metalanguage for 
RegExps so we can automatically build specific 
recognizer programs.  Like flex. But we will 
write it in 2 pages of Lisp you can read.

• Step one: Come up with a formal “grammar” 
for regexps that can be “parsed”.

• Step two: Write a parser than produces as 
output a Lisp program that implements the 
recognizer.
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A data language for constructing REs

• “abc” is the language {“abc”}
• stwildcard matches any string.  { [a-z,A-Z]*}
• If r1, r2, … rn are REs then so are

– (union r1 r2)
– (star r1)
– (star+ r1)
– (sequence r1 r2 …)
– (assign  r1 name)   same as r1 with side effect
– (eval r1 expression) same as r1 with eval side 

effect
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Important: So far we are talking about data 
not operations

• We are not computing union etc etc.  We are 
merely constructing Lisp lists. 

• For example, type '(union "a" "b")
• Or (list ‘union "a" "b")
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The only interesting operations we need are 
matching RegExps.

• To match a literal, look for it literally
• To match a sequence, do (and (match r1) (match r2) …)  

-- (every #’match ‘(r1 r2 ….))
• To match a union, do (or (match r1) (match r2) …)

continues until one succeeds. – (any #’match ‘(r1 r2 …))
• To match (star r1), in lisp:
• (not (do ()  ((not (match r1))))) ;;;... restated more 

conventionally,  
• (loop indefinitely until you find a failure to match r1) 

then return true, for all those forms (maybe none) 
which matched.  Problem with matching (0+1)*01 which 
requires backup..
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Here’s the matching program (most of it)

(defun mymatch (x)
(declare (special string index end))
(typecase x

(list ;; either a list or something else
(ecase (car x) ;;test the car for something we know

(sequence (every #'mymatch (cdr x)))
(union (some #'mymatch (cdr x)))
(star (not (do ()((not (mymatch (cadr x))) ))))))

;; it is not a list
(t (matchitem x)))
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Here’s the matching program (more of it)

(defun mymatch0 (pat string)
(declare (special string))
(let ((index 0)
(end (length string)))
(declare (special index end))
;; this is not very nice lisp: it uses
;; global "special" variables instead of
;; lexical variables.

(if (and (mymatch pat)(= end index))
'success 
`̀(failed after ,index chars))));first use of ` backquote
;;(list 'failed 'after index 'chars) ..
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Here’s the matching program (rest of it)

(defun matchitem (x)
(declare (special index end string))

(cond ((>= index end) nil)
((characterp x) ;match a character
(if (char= x(elt string index)) (incf index) nil))
((stringp x)
(and (string= x (subseq string index (+ index (length x))))

(incf index (length x))))
((eq x '?) (incf index)) ;single character wildcard
((eq x 'alphanumeric) (and

(alphanumericp (elt string index))
(incf index)))

;; generalize this to any predicate
((and (symbolp x)(get x 'chartype))
(and (funcall (get x 'chartype) (elt string index))

))
(t nil)))
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Here’s the matching program (extending it)

(setf (get 'digit 'chartype)
#'(lambda(x)

(and
(member x '(#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9))

(incf index))))

;;see matchprog.cl
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What if you don’t like (union r1 r2), (seq r1 
r2)?  / the META system.. (H. Baker)

• [r1 r2] for sequence
• {r1 r2} for union
• R1$  for Kleene star
• ! For evaluation
• @ for indirect “anything of this type”

defun parse-int (&aux (s +1) d (n 0))
(and
(matchit
[{#\+ [#\- !(setq s -1)] []}
@(digit d) !(setq n (ctoi d))
$[@(digit d) !(setq n (+ (* n 10) (ctoi d)))]])

(* s n)))



Prof. Fateman  CS 164  Lecture 6 55

Pragmatic parsing (Prag-Parse.html)

• Mostly this is a tour-de-force of Lisp 
programming to show you can do lex/yacc Unix 
utilities in a few pages of Lisp.  But it also 
suggests that with appropriate choice of data 
structure and a versatile language, you can 
scan/parse a fairly complicated language.

• Rather sophisticated Lisp programming style. 
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Simpler program (pitman.cl)

• Taken off comp.lang.lisp newsgroup
• Kent Pitman’s answer to How does one do 

lexical analysis in lisp?
• Rather straightforward Lisp programming 

style. 
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Conclusion: Regular Expression Programs

• Easy to specify lexical structure of typical 
language by Regular Expressions. 

• Good correspondence between intuition and 
implementation

• Automated tools can use the RE specs.
• Next time: more on just seat-of-pants 

systematic programming. 
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