
Prof. Fateman CS 164 Lecture 5 1

Lexical Analysis

Lecture 5

Prof. Fateman CS 164 Lecture 5 2

Outline

• Informal sketch of lexical analysis
– Identifies tokens in input string

• Issues in lexical analysis
– Lookahead
– Ambiguities

• Specifying lexers
– Regular expressions
– Examples of regular expressions

Prof. Fateman CS 164 Lecture 5 3

Lexical Analysis

• What do we want to do? Example:
if (i == j)

Z = 0;
else

Z = 1;

• The input is just a string of characters:
#\tab i f (i = = j) #\newline #\tab z = 0 ;
#\newline
e l s e #\newline #\tab #\tab z = 1 ;

• Goal: Partition input string into substrings where the substrings
are tokens or lexemes.

Prof. Fateman CS 164 Lecture 5 4

What’s a Token?

• A syntactic category
– In English:

noun, verb, adjective, …

– In a programming language:
Identifier, Integer, Single-Float, Double-Float, operator

(perhaps single or multiple character), Comment,
Keyword, Whitespace, string constant, …

Prof. Fateman CS 164 Lecture 5 5

Defining Tokens more precisely

• Token categories correspond to sets of strings, some
of them finite sets, like keywords, but some, like
identifiers, unbounded.

• Identifier: (typically) strings of letters or digits,
starting with a letter. Some languages restrict length
of identifier. Lisp does not require first letter…

• Integer: a non-empty string of digits. Bounded?
• Keyword: else or if or begin or …
• Whitespace: a non-empty sequence of blanks,

newlines, and tabs.

Prof. Fateman CS 164 Lecture 5 6

How are Tokens created?

• This is the job of the Lexer, the first pass
over the source code. The Lexer classifies
program substrings according to role.

• We also tack on to each token the location
(line and column) of where it ends, so we can
report errors in the source code by location.
(Personally, I hate this: it assumes “batch
processing” is normal and makes “interactive
processing” and debugging messier).

• We read tokens until we get to an end-of-file.

Prof. Fateman CS 164 Lecture 5 7

How are Tokens used?

• Output of lexical analysis is a stream of tokens . . . In
Lisp, we just make a list.. (token1 token2 token3 ….).
[In an interactive system we would just burp out
tokens as we find their ends; we don’t wait for EOF]

• This stream is the input to the next pass, the parser.
– (parser (lexer “filename”)) in Lisp.

• Parser makes use of token distinctions
– An identifier FOO may be treated differently from a

keyword ELSE. (Some language have no keywords. Lisp.)

Prof. Fateman CS 164 Lecture 5 8

Designing a Lexical Analyzer: Step 1

• Define a finite set of tokens
– Tokens describe all items of interest
– Choice of tokens depends on language, design of

parser
• Recall

\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;
• Useful tokens for this expression:

Integer, Keyword, operator, Identifier, Whitespace,
(,), =, ;

Prof. Fateman CS 164 Lecture 5 9

Designing a Lexical Analyzer: Step 2

• Describe which strings belong to each token
category

• Recall:
– Identifier: strings of letters or digits, starting

with a letter
– Integer: a non-empty string of digits
– Keyword: “else” or “if” or “begin” or …
– Whitespace: a non-empty sequence of blanks,

newlines, and tabs

Prof. Fateman CS 164 Lecture 5 10

Lexical Analyzer: Implementation

• An implementation reads characters until it
finds the end of a token. (Longest possible
single token). It then returns a package of
up to 3 items:
– What kind of thing is it? Identifier? Number?

Keyword?
– If it is an identifier, which one exactly? Foo? Bar?
– Where did this token appear in the source code

(line/col).
– Whitespace and comments are skipped.

Prof. Fateman CS 164 Lecture 5 11

Example

• Recall:
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Possible Token-lexeme groupings:
– Identifier: i, j, z
– Keyword: if, else
– Multi-character operator: == (not in MiniJava)
– Integer: 0, 1
– (,), =, ; single character operators of the same name
– Illegal . E.g. for MiniJava, ^ % $ … everything else?

Prof. Fateman CS 164 Lecture 5 12

Writing a Lexical Analyzer: Comments

• The lexer usually discards “uninteresting” tokens that
don’t contribute to parsing, but has to keep track of
line/column counts.

• If a comment can “Run off the end” it means that you
must check for EOF when skipping comments too.

• Sometimes comments are embedded in comments.
What to do? /* 34 /* foo */ 43 */. Java handles this
“wrong”.

• Sometimes compiler directives are inside comments,
so comments are really NOT ignored.

/**set optimization = 0 */

Prof. Fateman CS 164 Lecture 5 13

True Crimes of Lexical Analysis

• Is it as easy as it sounds?

• Not quite!

• Look at some history . . .

Prof. Fateman CS 164 Lecture 5 14

Lexical Analysis in FORTRAN

• FORTRAN rule: Whitespace is insignificant

• E.g., VAR1 is the same as VA R1

• Footnote: FORTRAN whitespace rule
motivated by inaccuracy of punch card
operators

Prof. Fateman CS 164 Lecture 5 15

Now we see it as a terrible design! Example

• Consider
– DO 5 I = 1,25
– DO 5 I = 1.25

• The first starts a loop, 25 times, running until the
statement labeled “5”.
– DO 5 I = 1 , 25

• The second is DO5I = 1.25 an assignment

• Reading left-to-right, cannot tell if DO5I is a variable
or DO stmt. until after “,” is reached

Prof. Fateman CS 164 Lecture 5 16

A nicer design limits the amount of lookahead
needed

Even our simple example has lookahead issues
ii vs. if
& vs. && (not in MJ…)

But this uses only one or two characters, and is
certainly resolved by the time you find white
space, or another character, e.g. X&Y or X&&Y.
In C, consider a+++++b . Is it a++ + ++b ? Or
(a++)++ +b or some other breakup?

Prof. Fateman CS 164 Lecture 5 17

Review

• The goal of lexical analysis is to
– Partition the input string into lexemes
– Identify the token type, and perhaps the value of

each lexeme (probably. E.g.
convert_string_to_integer(“12345"))

• Left-to-right scan => lookahead sometimes
required.

Prof. Fateman CS 164 Lecture 5 18

Next

– We need a way to describe the lexemes of each
token class so that we can write a program (or
build/use a program that automatically takes the
description and writes the lexer!)

– Fortunately, we can start from a well-studied area
in theoretical computer science, Formal Languages
and Automata Theory.

Prof. Fateman CS 164 Lecture 5 19

Languages

Def. Let Σ be a set of characters. A language
over Σ is a set of strings of characters drawn

from Σ
(Σ is called the alphabet . Pronounced SIGMA.

Why are we using Greek? So as to separate the
language from the meta language. Presumably
our alphabet does not include Σ as a
character.)

Prof. Fateman CS 164 Lecture 5 20

Examples of Languages

• Alphabet = English
characters

• Language = English
sentences

• Not every string of
English characters is an
English sentence.

• Alphabet = ASCII,
• Language = C programs,

• Note: ASCII character
set is different from
English character set.

• UNICODE is another,
much larger set, used by
Java, Common Lisp.

Prof. Fateman CS 164 Lecture 5 21

One program’s language can be another’s alphabet

• An alphabet {A,B,C,D,E,—Z} can be used to
form a word language: {CAT DOG EAT HAT
IN THE …}.

• The “alphabet” of {CAT, DOG, EAT ….} can be
used to form a different language e.g. {THE
CAT IN THE HAT, ….}

Prof. Fateman CS 164 Lecture 5 22

Another kind of alphabet, in this case, for MJ

• Numbers
• Keywords
• Identifiers [an infinite set]
• Other tokens like + - * / ()[]{}

• Then the MJ language is defined over this
pre-tokenized alphabet

Prof. Fateman CS 164 Lecture 5 23

Notation

• We repeat: Languages are sets of strings. Subsets of
“the set of all strings over an alphabet Σ”.

• Need some tools for specifying which subset we want
to designate a particular language.

• For English, and an alphabet of words from the
dictionary, we can use a grammar. (It almost works).
For Java programs we can also use a grammar.

• But for now, we want to specify the set of tokens.
That is, map the language of single characters into
“sentences” that are tokens. Tokens have a simple
structure.

Prof. Fateman CS 164 Lecture 5 24

Regular Languages

• There are several formalisms for specifying tokens.
• Regular languages are the most popular

– Simple and useful theory
– Easy to understand
– Efficient implementations are possible
– Almost powerful enough (Can’t do nested comments)
– Popular “almost automatic” tools to write programs.

• The standard notation for regular languages is regular
expressions.

Prof. Fateman CS 164 Lecture 5 25

Atomic Regular Expressions

• Single character denotes a set of one string

• Epsilon character denotes a set of one 0-
length string

• Empty set is {} = ∅ not the same as ε.
– Size(∅)=0. Size(ε) =1

{ }' ' " "c c=

{ }""ε =

Prof. Fateman CS 164 Lecture 5 26

Compound Regular Expressions

• Union: If A and B are REs then…

• Concatenation of Sets Concatenation of
strings

• Iteration (Kleene closure)

{ }| or A B s s A s B+ = ∈ ∈

{ }| and AB ab a A b B= ∈ ∈

*
0

 where ... times ...i i
i

A A A A i A
≥

= =∪

Prof. Fateman CS 164 Lecture 5 27

In particular, (notationally confusing concatenation
with multiplication, union with addition...)

A* = ε + A +AA + AAA + …

we also sometimes use

A+ = A +AA + AAA + … = AA*

Prof. Fateman CS 164 Lecture 5 28

Regular Expressions

• Def. The regular expressions over Σ are the
smallest set of expressions including

*

' ' where
where , are rexp over
" " "
where is a rexp over

c c
A B A B
AB
A A

ε
∈ ∑

+ ∑

∑

Prof. Fateman CS 164 Lecture 5 29

Syntax vs. Semantics

• This notation means this set

{ }

*
0

() ""
(' ') {" "}
() () ()
() { | () and ()}
() ()i

i

L
L c c
L A B L A L B
L AB ab a L A b L B
L A L A

ε

≥

=
=

+ = ∪
= ∈ ∈
= ∪

Prof. Fateman CS 164 Lecture 5 30

Example: Keyword

Keyword: “else” or “if” or “begin” or …

else' + 'if' + 'begi' n' +

Note: 'else' denotes the same set as "e""l""s""e"

Prof. Fateman CS 164 Lecture 5 31

Sometimes we use convenient names for sets

Keywords= { 'else' 'if' 'then' 'when‘ ...}

Prof. Fateman CS 164 Lecture 5 32

Example: Integers

Integer: a non-empty string of digits

Integers are almost digit+

Though, is 000 an integer?

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

Prof. Fateman CS 164 Lecture 5 33

Sometimes we use () in reg exps

For example A(B+C)
denotes the set AB+AC

Prof. Fateman CS 164 Lecture 5 34

Sometimes we need a language with () in it!

For example { "+" "(" ")"} denotes a set with
3 strings in it, using our metasymbols +().
Because our programming language will usually
be in the same alphabet as our description of
REs, we need to take some care that our
metasymbols can be distinguished from our
alphabet by special marks like ". Often
authors leave off these marks if they think
the reader will understand. If you leave such
marks off in programs, you may be in trouble.

Prof. Fateman CS 164 Lecture 5 35

Example: Identifier

Identifier: strings of letters or digits,
starting with a letter

• letter = 'A'+'B'+…+'Z'+'a'+…+'z'+'_'
• identifier = letter(letter + digit)*

• Is (letter+ + digit)* the same?
• Is (letter* + digit*) the same?
• Is letter+ (letter+ + digit)* the same?

Prof. Fateman CS 164 Lecture 5 36

Example: Whitespace

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

()' ' + '\n' + '\t' +

Prof. Fateman CS 164 Lecture 5 37

Example: Phone Numbers

• Regular expressions are all around you!
• Consider (510)-642-2020.

{ }
3

4

3

exchange = digit
phone = digit
area = digit
phone_number = '(' area ')-' exc

= digits -,(,)

hange '-' phone

∑ ∪

Prof. Fateman CS 164 Lecture 5 38

Example: Email Addresses

• Consider rootbeer@cs.berkeley.edu

{ }
+name = letter

address = name '@' name '.'

letters

name '.

'

.,@

name

∑ = ∪

Prof. Fateman CS 164 Lecture 5 39

Summary

• Regular expressions describe many useful
languages

• Regular languages are (exactly) those
languages expressible as regular expressions.
– We still need an implementation to take a

specification of rexp R and produce a function that
answers the question: Given a string s is

next
time.()?s L R∈

	Lexical Analysis
	Outline
	Lexical Analysis
	What’s a Token?
	Defining Tokens more precisely
	How are Tokens created?
	How are Tokens used?
	Designing a Lexical Analyzer: Step 1
	Designing a Lexical Analyzer: Step 2
	Lexical Analyzer: Implementation
	Example
	Writing a Lexical Analyzer: Comments
	True Crimes of Lexical Analysis
	Lexical Analysis in FORTRAN
	Now we see it as a terrible design! Example
	A nicer design limits the amount of lookahead needed
	Review
	Next
	Languages
	Examples of Languages
	One program’s language can be another’s alphabet
	Another kind of alphabet, in this case, for MJ
	Notation
	Regular Languages
	Atomic Regular Expressions
	Compound Regular Expressions
	In particular, (notationally confusing concatenation with multiplication, union with addition...)
	Regular Expressions
	Syntax vs. Semantics
	Example: Keyword
	Sometimes we use convenient names for sets
	Example: Integers
	Sometimes we use () in reg exps
	Sometimes we need a language with () in it!
	Example: Identifier
	Example: Whitespace
	Example: Phone Numbers
	Example: Email Addresses
	Summary

